Skip to main content

Advertisement

Log in

A Prospective Analysis of Co-Processed Non-Ionic Surfactants in Enhancing Permeability of a Model Hydrophilic Drug

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Paracellular route is a natural pathway for the transport of many hydrophilic drugs and macromolecules. The purpose of this study was to prospectively evaluate the ability of novel co-processed non-ionic surfactants to enhance the paracellular permeability of a model hydrophilic drug metformin using Caco-2 (human colonic adenocarcinoma) cell model. A three-tier screen was undertaken to evaluate the co-processed blends based on cytotoxicity, cellular integrity, and permeability coefficient. The relative contribution of the paracellular and the transcellular route in overall transport of metformin by co-processed blends was determined. Immunocytochemistry was conducted to determine the distribution of tight-junction protein claudin-1 after incubation with the co-processed blends. It was found that novel blends of Labrasol and Transcutol-P enhanced metformin permeability by approximately twofold with transient reduction in the transepithelia electrical resistance (TEER) and minimal cytotoxicity compared with the control, with the paracellular pathway as the major route of metformin transport. Maximum permeability of metformin (∼10-fold) was mediated by Tween-20 blends along with >75% reduction in the TEER which was irreversible over 24-h period. A shift in metformin transport from the paracellular to the transcellular route was observed with some Tween-20 blends. Immunocytochemical analysis revealed rearrangement of the cellular borders and fragmentation on treatment with Tween-20 blends. In conclusion, cytotoxicity, cellular integrity, and permeability of the hydrophilic drugs can be greatly influenced by the polyoxyethylene residues and medium chain fatty acids in the non-ionic surfactants at clinically relevant concentrations and therefore should be thoroughly investigated prior to their inclusion in formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Deliv Rev. 2012;64:280–9.

    Article  Google Scholar 

  2. Anderson JM, Van Itallie CM. Physiology and function of the tight junction. Cold Spring Harb Perspect Biol. 2009;1:1–16.

    Article  Google Scholar 

  3. Aungst BJ, Saitoh H, Burcham DL, Huang S, Mousa SA, Hussain MA. Enhancement of the intestinal absorption of peptides and nonpeptides. J Contr Rel. 1996;41(1–2):19–31.

    Article  CAS  Google Scholar 

  4. Balda M, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K. Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 1996;134(4):1031–49.

    Article  PubMed  CAS  Google Scholar 

  5. Benet LZ, Broccatelli F, Opera TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519–47.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Buyukozturk F, Benneyan JC, Carrier RL. Impact of emulsion-based drug delivery systems on intestinal permeability and drug release kinetics. J Control Release. 2010;142(1):22–30.

    Article  PubMed  CAS  Google Scholar 

  7. Chantret I, Barbat A, Dussaulx E, Brattain MG, Zweibaum A. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 1988;48:1936–42.

    PubMed  CAS  Google Scholar 

  8. Coyne CB, Ribeiro CMP, Boucher RC, Johnson LG. Acute mechanism of medium chain fatty acid-induced enhancement of airway epithelial permeability. JPET. 2003;305:440–50.

    Article  CAS  Google Scholar 

  9. Davis SS, Hardy JG, Fara JW. Transit of pharmaceutical dosage forms through the small intestine. Gut. 1986;27:886–92.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Deli MA. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta. 2009;1788(4):892–910.

    Article  PubMed  CAS  Google Scholar 

  11. Dimitrijevic D, Shaw JA, Florence AT. Effect of some non ionic surfactants on transepithelial permeability in Caco-2 cells. J Pharm Pharmacol. 1999;52:157–62.

    Article  Google Scholar 

  12. Fasano A, Uzzao S. Modulation of intestinal tight junctions by zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J Clin Invest. 1997;99(6):1158–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.

    Article  PubMed  CAS  Google Scholar 

  14. Gershanik T, Haltner E, Leh C, Benita S. Charge-dependent interaction of self-emulsifying oil formulations with Caco-2 cells monolayers: binding, effects on barrier function and cytotoxicity. Int J Pharm. 2000;211(1–2):29–36.

    Article  PubMed  CAS  Google Scholar 

  15. Hayashi M, Sakai T, Hasegawa Y, Nishikawahara T, Tomioka H, Iida A, et al. Physiological mechanism for enhancement of paracellular drug transport. J Contr Rel. 1999;62:141–8.

    Article  CAS  Google Scholar 

  16. Hidalgo IJ, Raub TJ, Borchardt RT. Characterization of the human colon cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 1989;96:736–9.

    PubMed  CAS  Google Scholar 

  17. Hochman J, Artursson P. Mechanism of absorption enhancement and tight junction regulation. J Contr Rel. 1994;29:253–67.

    Article  CAS  Google Scholar 

  18. Hubatsch I, Ragnarsson EGE, Artursson P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc. 2007;2:2111–9.

    Article  PubMed  CAS  Google Scholar 

  19. Hu Z, Tawa R, Konishi T, Shibata N, Takada K. A novel emulsifier, labrasol, enhances gastrointestinal absorption of gentamicin. Life Sci. 2001;69(24):2899–910.

    Article  PubMed  CAS  Google Scholar 

  20. Kerwin BA. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: structure and degradation pathways. J Pharm Sci. 2008;97(8):2924–35.

    Article  PubMed  CAS  Google Scholar 

  21. Kimura N, Masuda S, Tanihara Y, Ueo H, Okuda M, Katsura T, et al. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab Pharmacokinet. 2005;20(5):379–86.

    Article  PubMed  CAS  Google Scholar 

  22. Lindmark T, Kimura Y, Artursson P. Absorption enhancement through intracellular regulation of tight junction permeability by medium chain fatty acids in Caco-2 cells. JPET. 1998;284(1):362–9.

    CAS  Google Scholar 

  23. Matter K, Balda MS. Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting. J Cell Sci. 1998;111(Pt 4):511–9.

    PubMed  CAS  Google Scholar 

  24. Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephol. 2006;17(8):2127–35.

    Article  CAS  Google Scholar 

  25. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.

    Article  PubMed  CAS  Google Scholar 

  26. Narai A, Arai S, Shimizu M. Rapid decrease in transepithelial electrical resistance of human intestinal Caco-2 cell monolayers by cytotoxic membrane perturbents. Toxicol In Vitro. 1997;11(4):347–54.

    Article  PubMed  CAS  Google Scholar 

  27. Noel M. Kinetic study of normal and sustained release dosage forms of metformin in normal subjects. Res Clin Forums. 1979;1:33–44.

    Google Scholar 

  28. Pappenheimer JR, Reiss KZ. Contribution of solvent drag through intercellular junctions to absorption of nutrients by the small intestine of the rat. J Membr Biol. 1987;100:123–36.

    Article  PubMed  CAS  Google Scholar 

  29. Pinto M, Robine-Leon S, Appay MD, Kedinger M, Triadou N, Dussaulx E, et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biology Cell. 1983;47:323–30.

    Google Scholar 

  30. Prasad YV, Puthli SP, Eaimtralarn S. Enhanced intestinal absorption of vancomycin with labrasol and d-alpha-tocopheryl PEG 1000 succinate in rats. Int J Pharm. 2003;250(1):181–90.

    Article  PubMed  CAS  Google Scholar 

  31. Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Met Dispos. 2008;36(8):1650–8.

    Article  CAS  Google Scholar 

  32. Rajasekaran AK, Rajasekaran SA. Role of Na-K-ATPase in the assembly of toght junctions. Am J Physiol Renal Physiol. 2003;285:F388–96.

    PubMed  Google Scholar 

  33. Rege BD, Yu XL, Hussain AS, Polli JE. Effect of common excipients on Caco-2 transport of low-permeability drugs. J Pharm Sci. 2001;90(11):98–107.

    Article  Google Scholar 

  34. Rege BG, Kao JPY, Polli JE. Effects of non-ionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16:237–46.

    Article  PubMed  CAS  Google Scholar 

  35. Sakai M, Imai T, Ohtake H, Azuma H, Otagiri M. Effects of absorption enhancers on cytoskeletal actin filaments in Caco-2 cell monolayers. Life Sci. 1998;63(1):45–54.

    Article  PubMed  CAS  Google Scholar 

  36. Sakar Y, Meddah B, Faouzi MA, Cherrah Y, Bado A, Ducroc R. Metformin-induced regulation of intestinal-glucose transporters. J Physio Pharmacol. 2010;61(3):301–7.

    CAS  Google Scholar 

  37. Salama NN, Fasano A, Thakar M, Eddington N. The impact of ΔG on the oral bioavailability of low bioavailable therapeutic agents. JPET. 2005;312:199–205.

    Article  CAS  Google Scholar 

  38. Sambol NC, Chiang JO, Conner M, Liu CY, Lin ET, Goodman AM, et al. Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with non-insulin dependent diabetes mellitus. J Clin Pharmacol. 1996;36:1012–21.

    Article  PubMed  CAS  Google Scholar 

  39. Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30:359–71.

    Article  PubMed  CAS  Google Scholar 

  40. Sha X, Yan G, Wu Y, Li J, Fang X. Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. Eur J Pharm Sci. 2005;477–486.

  41. Sun D, Yu LX, Hussain MA, Wall DA, Smith RL, Amidon GL. In vitro testing of drug absorption for drug developability assessment. Cur Opin Drug Discov Dev. 2004;7:75–85.

    CAS  Google Scholar 

  42. Swenson ES, Milisen WB, Curatolo W. Intestinal permeability enhancement: efficacy, acute local toxicity, and reversibility. Pharm Res. 1994;11(8):1132–42.

    Article  PubMed  CAS  Google Scholar 

  43. Turner J. Show we the pathway! Regulation of paracellular permeability by Na+-glucose cotransport. Adv Drug Deliv Rev. 2000;41:265–81.

    Article  PubMed  CAS  Google Scholar 

  44. Tucker GT, Casay C, Phillips PJ, Connor H, Ward JD, Woods HF. Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol. 1981;12:235–46.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Ujhelyi Z, Fenyvesi F, Varadi J, Feher P, Kiss T, Veszelka S, et al. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in Caco-2 cell monolayer. Eur J Pharm Sci. 2012;47:564–73.

    Article  PubMed  CAS  Google Scholar 

  46. Will C, Fromm M, Müller D. Claudin tight junction proteins: novel aspects in paracellular transport. Perit Dial Int. 2008;28(6):577–84.

    PubMed  CAS  Google Scholar 

  47. Wright E, Loo D, Hirayama B, Turk E. Surprising versatility of Na+-glucose cotransporters: SLC5. Physiology. 2004;19:370–6.

    Article  PubMed  CAS  Google Scholar 

  48. Yu Q, Wang Z, Li P, Yang Q. The effect of various absorption enhancers on tight junction in the human intestinal Caco-2 cell line. Drug Dev Ind Pharm. 2012;1–6.

  49. Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Met Dispos. 2007;35:1956–62.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parnali Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvi, M.M., Chatterjee, P. A Prospective Analysis of Co-Processed Non-Ionic Surfactants in Enhancing Permeability of a Model Hydrophilic Drug. AAPS PharmSciTech 15, 339–353 (2014). https://doi.org/10.1208/s12249-013-0065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-0065-8

KEY WORDS

Navigation