Skip to main content

Advertisement

Log in

Non-ionic Surfactants as a P-Glycoprotein(P-gp) Efflux Inhibitor for Optimal Drug Delivery—A Concise Outlook

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Significant research efforts have been devoted to unraveling the mystery of P-glycoprotein(P-gp) in drug delivery applications. The efflux membrane transporter P-gp is widely distributed in the body and accountable for restricting drug absorption and bioavailability. For these reasons, it is the primary cause of developing multidrug resistance (MDR) in most drug delivery applications. Therefore, P-gp inhibitors must be explored to address MDR and the low bioavailability of therapeutic substrates. Several experimental models in kinetics and dynamic studies identified the sensitivity of drug molecules and excipients as a P-gp inhibitor. In this review, we aimed to emphasize nonionic surface-active agents for effective reversal of P-gp inhibition. As it is inert, non-toxic, noncharged, and quickly reaching the cytosolic lipid membrane (the point of contact with P-gp efflux protein) enables it to be more efficient as P-gp inhibitors. Moreover, nonionic surfactant improves drug absorption and bioavailability through the various mechanism, involving (i) association of drug with surfactant improves solubilization, facilitating its cell penetration and absorption; (ii) weakening the lateral membrane packing density, facilitating the passive drug influx; and (iii) inhibition of the ATP binding cassette of transporter P-glycoprotein. The application of nonionic surfactant as P-gp inhibitors is well established and supported by various experiments. Altogether, herein, we have primarily focused on various nonionic surfactants and their development strategies to conquer the MDR-causing effects of P-gp efflux protein in drug delivery.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Srivalli KMR, Lakshmi P. Overview of P-glycoprotein inhibitors: a rational outlook. Braz J Pharm Sci. 2012;48(3):353–67.

    Article  CAS  Google Scholar 

  2. Sharom FJ. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function. Front Oncol. 2014;4:41.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Assanhou AG, Li W, Zhang L, Xue L, Kong L, Sun H, Mo R, Zhang C. Reversal of multidrug resistance by co-delivery of paclitaxel and lonidamine using a TPGS and hyaluronic acid dual-functionalized liposome for cancer treatment. Biomaterials. 2015;73:284–95.

    Article  CAS  PubMed  Google Scholar 

  4. Li H, Krstin S, Wang S, Wink M. Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin. Molecules. 2018;23(3):557.

    Article  PubMed Central  Google Scholar 

  5. Dinić J, Podolski-Renić A, Jovanović M, Musso L, Tsakovska I, Pajeva I, Dallavalle S, Pešić M. Novel heat shock protein 90 inhibitors suppress P-Glycoprotein activity and overcome multidrug resistance in cancer cells. Int J Mol Sci. 2019;20(18):4575.

    Article  PubMed Central  Google Scholar 

  6. Li F, Howard KD, Myers MJ. Influence of P-glycoprotein on the disposition of fexofenadine and its enantiomers. J Pharm Pharmacol. 2017;69(3):274–84.

    Article  CAS  PubMed  Google Scholar 

  7. Aubets J, Jansat JM, Salva M, Birks VM, Cole RJ, Lewis J, et al. No evidence for interactions of dimethylfumarate (DMF) and its main metabolite monomethylfumarate (MMF) with human cytochrome P450 (CYP) enzymes and the P-glycoprotein(P-gp) drug transporter. Pharmacol Res Perspect. 2019;7(6):e00540.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Levi M, Pena L, Alonso-Diez A, Brunetti B, Muscatello LV, Benazzi C, et al. P-Glycoprotein and breast cancer resistance protein in canine inflammatory and noninflammatory grade III mammary carcinomas. Vet Pathol. 2019;56(6):840–7.

    Article  CAS  PubMed  Google Scholar 

  9. Edwards JE, Alcorn J, Savolainen J, Anderson BD, McNamara PJ. Role of P-glycoprotein in distribution of nelfinavir across the blood-mammary tissue barrier and blood-brain barrier. Antimicrob Agents Chemother. 2005;49(4):1626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Melaine N, Liénard M-O, Dorval I, Le Goascogne C, Lejeune H, Jégou B. Multidrug resistance genes and P-glycoprotein in the testis of the rat, mouse, guinea pig, and human. Biol Reprod. 2002;67(6):1699–707.

    Article  CAS  PubMed  Google Scholar 

  11. Beaulieu É, Demeule M, Ghitescu L, Béliveau R. P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J. 1997;326(2):539–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ma JD, Tsunoda SM, Bertino JS, Trivedi M, Beale KK, Nafziger AN. Evaluation of in vivo p-glycoprotein phenotyping probes. Clin Pharmacokinet. 2010;49(4):223–37.

    Article  CAS  PubMed  Google Scholar 

  13. Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:DTI. S12519.

    Article  Google Scholar 

  14. Spieler D, Namendorf C, Namendorf T, Uhr M. abcb1ab p-glycoprotein is involved in the uptake of the novel antidepressant vortioxetine into the brain of mice. J Psychiatr Res. 2019;109:48–51.

    Article  PubMed  Google Scholar 

  15. Li L, Fu Q, Xia M, Xin L, Shen H, Li G, Ji G, Meng Q, Xie Y. Inhibition of P-glycoprotein mediated efflux in Caco-2 cells by phytic acid. J Agric Food Chem. 2018;66(4):988–98.

    Article  CAS  PubMed  Google Scholar 

  16. Kadioglu O, Efferth T. A machine learning-based prediction platform for P-glycoprotein modulators and its validation by molecular docking. Cells. 2019;8(10):1286.

    Article  CAS  PubMed Central  Google Scholar 

  17. Jiang B, Yan L-J, Wu Q. ABCB1 (C1236T) polymorphism affects P-glycoprotein-mediated transport of methotrexate, doxorubicin, actinomycin D, and etoposide. DNA Cell Biol. 2019;38(5):485–90.

    Article  CAS  PubMed  Google Scholar 

  18. Sagnou M, Novikov FN, Ivanova ES, Alexiou P, Stroylov VS, Titov IY, Tatarskiy VV, Vagida MS, Pelecanou M, Shtil AA, Chilov GG. Novel curcumin derivatives as P-glycoprotein inhibitors: Molecular modeling, synthesis and sensitization of multidrug resistant cells to doxorubicin. Eur J Med Chem. 2020;198:112331.

    Article  CAS  PubMed  Google Scholar 

  19. Chen H-J, Chung Y-L, Li C-Y, Chang Y-T, Wang CC, Lee H-Y, Lin HY, Hung CC. Taxifolin resensitizes multidrug resistance cancer cells via uncompetitive inhibition of P-glycoprotein function. Molecules. 2018;23(12):3055.

    Article  PubMed Central  Google Scholar 

  20. Bansal T, Akhtar N, Jaggi M, Khar RK, Talegaonkar S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today. 2009;14(21-22):1067–74.

    Article  CAS  PubMed  Google Scholar 

  21. Shapiro AB, Ling V. Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol. 1997;53(4):587–96.

    Article  CAS  PubMed  Google Scholar 

  22. Drori S, Eytan GD, Assaraf YG. Potentiation of anticancer-drug cytotoxicity by multidrug-resistance chemosensitizers involves alterationsin membrane fluidity leading to increased membrane permeability. Eur J Biochem. 1995;228(3):1020–9.

    Article  CAS  PubMed  Google Scholar 

  23. Robert J, Jarry C. Multidrug resistance reversal agents. J Med Chem. 2003;46(23):4805–17.

    Article  CAS  PubMed  Google Scholar 

  24. Jaramillo AC, Saig FA, Cloos J, Jansen G, Peters GJ. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resistance. 2018;1(1):6–29.

    Article  Google Scholar 

  25. Al-Ali AAA, Steffansen B, Holm R, Nielsen CU. Nonionic surfactants increase digoxin absorption in Caco-2 and MDCKII MDR1 cells: impact on P-glycoprotein inhibition, barrier function, and repeated cellular exposure. Int J Pharm. 2018;551(1-2):270–80.

    Article  CAS  PubMed  Google Scholar 

  26. Al-Ali AAA, Nielsen RB, Steffansen B, Holm R, Nielsen CU. Nonionic surfactants modulate the transport activity of ATP-binding cassette (ABC) transporters and solute carriers (SLC): Relevance to oral drug absorption. Int J Pharm. 2019;566:410–33.

    Article  CAS  PubMed  Google Scholar 

  27. Werle M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm Res. 2008;25(3):500–11.

    Article  CAS  PubMed  Google Scholar 

  28. Werle M, Takeuchi H, Bernkop-Schnürch A. New-generation efflux pump inhibitors. Expert Rev Clin Pharmacol. 2008;1(3):429–40.

    Article  CAS  PubMed  Google Scholar 

  29. Sharom FJ, Yu X, Didiodato G, Chu JW. Synthetic hydrophobic peptides are substrates for P-glycoprotein and stimulate drug transport. Biochem J. 1996;320(2):421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Newman MJ, Rodarte JC, Benbatoul KD, Romano SJ, Zhang C, Krane S, Moran EJ, Uyeda RT, Dixon R, Guns ES, Mayer LD. Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res. 2000;60(11):2964–72.

    CAS  PubMed  Google Scholar 

  31. Constantinides PP, Wasan KM. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein(P-gp) substrate drugs: in vitro/in vivo case studies. J Pharm Sci. 2007;96(2):235–48.

    Article  CAS  PubMed  Google Scholar 

  32. Romsicki Y, Sharom FJ. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter. Biochemistry. 2001;40(23):6937–47.

    Article  CAS  PubMed  Google Scholar 

  33. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers for overcoming drug resistance in cancer. Adv Drug Deliv Rev. 2002;54(5):759–79.

    Article  CAS  PubMed  Google Scholar 

  34. Apte S. Selecting surfactants for the maximum inhibition of the activity of the multidrug resistance efflux pump transporter, P-glycoprotein: conceptual development. J Excip Food Chem. 2010;1(3):51–9.

    CAS  Google Scholar 

  35. Patel D, Chatterjee B. Identifying underlying issues related to the inactive excipients of transfersomes based drug delivery system. Curr Pharm Des. 2020;27:971–80.

    Article  Google Scholar 

  36. Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm. 2019;144:18–39.

    Article  PubMed  Google Scholar 

  37. Kulsirirat T, Rukthong P, Dechwongya P, Sathirakul K. The potential of non-ionic surfactant against P-glycoprotein efflux transporters for drug development system. J Bioequiv Availab. 2017;9:528–9.

    CAS  Google Scholar 

  38. Zhang H, Yao M, Morrison RA, Chong S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch Pharm Res. 2003;26(9):768–72.

    Article  CAS  PubMed  Google Scholar 

  39. Rege BD, Kao JP, Polli JE. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur J Pharm Sci. 2002;16(4-5):237–46.

    Article  CAS  PubMed  Google Scholar 

  40. Raub TJ. P-glycoprotein recognition of substrates and circumvention through rational drug design. Mol Pharm. 2006;3(1):3–25.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. Acta Pharm Sin B. 2011;1(4):208–19.

    Article  Google Scholar 

  42. Ghanbarzadeh S, Khorrami A, Arami S. Nonionic surfactant-based vesicular system for transdermal drug delivery. Drug delivery. 2015;22(8):1071–7.

    Article  CAS  PubMed  Google Scholar 

  43. Seelig A, Gerebtzoff G. Enhancement of drug absorption by noncharged detergents through membrane and P-glycoprotein binding. Expert Opin Drug Metab Toxicol. 2006;2(5):733–52.

    Article  CAS  PubMed  Google Scholar 

  44. Kim Y, Chen J. Molecular structure of human P-glycoprotein in the ATP-bound, outward-facing conformation. Science. 2018;359(6378):915–9.

    Article  CAS  PubMed  Google Scholar 

  45. Tombline G, Muharemagić A, White LB, Senior AE. Involvement of the “occluded nucleotide conformation” of P-glycoprotein in the catalytic pathway. Biochemistry. 2005;44(38):12879–86.

    Article  CAS  PubMed  Google Scholar 

  46. Ruetz S, Gros P. Phosphatidylcholine translocase: a physiological role for the mdr2 gene. Cell. 1994;77(7):1071–81.

    Article  CAS  PubMed  Google Scholar 

  47. Varma MV, Ashokraj Y, Dey CS, Panchagnula R. P-glycoprotein inhibitors and their screening: a perspective from bioavailability enhancement. Pharmacol Res. 2003;48(4):347–59.

    Article  CAS  PubMed  Google Scholar 

  48. Sharom FJ, Liu R, Qu Q, Romsicki Y. Exploring the structure and function of the P-glycoprotein multidrug transporter using fluorescence spectroscopic tools. In Seminars in cell & developmental biology. Academic Press. 2001;12(3):257–265

  49. Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. 2008:105–127.

  50. Yano K, Seto S, Kamioka H, Mizoi K, Ogihara T. Testosterone and androstenedione are endogenous substrates of P-glycoprotein. Biochem Biophys Res Commun. 2019;520(1):166–70.

    Article  CAS  PubMed  Google Scholar 

  51. Ohashi R, Watanabe R, Esaki T, Taniguchi T, Torimoto-Katori N, Watanabe T, Ogasawara Y, Takahashi T, Tsukimoto M, Mizuguchi K. Development of simplified in vitro P-glycoprotein substrate assay and in silico prediction models to evaluate transport potential of P-glycoprotein. Mol Pharm. 2019;16(5):1851–63.

    Article  CAS  PubMed  Google Scholar 

  52. Sajid A, Raju N, Lusvarghi S, Vahedi S, Swenson RE, Ambudkar SV. Synthesis and characterization of bodipy-FL-cyclosporine A as a substrate for multidrug resistance-linked P-glycoprotein (ABCB1). Drug Metab Dispos. 2019;47(10):1013–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mendell J, Zahir H, Matsushima N, Noveck R, Lee F, Chen S, Zhang G, Shi M. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13(5):331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hee Choi Y, Yu A-M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr Pharm Des. 2014;20(5):793–807.

    Article  Google Scholar 

  55. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM. P-glycoprotein: from genomics to mechanism. Oncogene. 2003;22(47):7468–85.

    Article  CAS  PubMed  Google Scholar 

  56. Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Site-specific protein labeling. 2015;1266:29–53.

    Article  CAS  Google Scholar 

  57. Li-Blatter X, Nervi P, Seelig A. Detergents as intrinsic P-glycoprotein substrates and inhibitors. Biochim Biophys Acta (BBA)-Biomembr. 2009;1788(10):2335–44.

    Article  CAS  Google Scholar 

  58. Pater SG, Bummer PM. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study. Int J Pharm. 2017;516(1-2):131–43.

    Article  Google Scholar 

  59. Teaima MH, Abdelhalim SA, El-Nabarawi MA, Attia DA, Helal DA. Non-ionic surfactant based vesicular drug delivery system for topical delivery of caffeine for treatment of cellulite: design, formulation, characterization, histological anti-cellulite activity, and pharmacokinetic evaluation. Drug Dev Ind Pharm. 2018;44(1):158–71.

    Article  CAS  PubMed  Google Scholar 

  60. Polarz S, Kunkel M, Donner A, Schlötter M. Added-value surfactants. Chemistry (Weinheim an der Bergstrasse, Germany). 2018;24(71):18842.

    CAS  Google Scholar 

  61. Li C, Shen Y, Sun C, Cheraga N, Tu J. Immunosafety and chronic toxicity evaluation of monomethoxypoly (ethylene glycol)-b-poly (lactic acid) polymer micelles for paclitaxel delivery. Drug delivery. 2016;23(3):878–85.

    Article  CAS  Google Scholar 

  62. Baghban A, Sasanipour J, Sarafbidabad M, Piri A, Razavi R. On the prediction of critical micelle concentration for sugar-based non-ionic surfactants. Chem Phys Lipids. 2018;214:46–57.

    Article  CAS  PubMed  Google Scholar 

  63. Li D, Wu X, Yu X, Huang Q, Tao L. Synergistic effect of non-ionic surfactants Tween 80 and PEG6000 on cytotoxicity of insecticides. Environ Toxicol Pharmacol. 2015;39(2):677–82.

    Article  CAS  PubMed  Google Scholar 

  64. Villate-Beitia I, Gallego I, Martínez-Navarrete G, Zárate J, López-Méndez T, Soto-Sánchez C, Santos-Vizcaíno E, Puras G, Fernández E, Pedraz JL. Polysorbate 20 non-ionic surfactant enhances retinal gene delivery efficiency of cationic niosomes after intravitreal and subretinal administration. Int J Pharm. 2018;550(1-2):388–97.

    Article  CAS  PubMed  Google Scholar 

  65. Ammar HO, Ibrahim M, Mahmoud AA, Shamma RN, El Hoffy NM. Non-ionic surfactant based in situ forming vesicles as controlled parenteral delivery systems. AAPS PharmSciTech. 2018;19(3):1001–10.

    Article  CAS  PubMed  Google Scholar 

  66. Hasanuddin HAB, MMR MMA, Salama M, Tripathy M. Micellization of D-α-tocopheryl polyethylene Glycol 1000 succinate (TPGS 1000): thermodynamics and related solute solvent interactions. Orient J Chem. 2014;30(3):1119–23.

    Article  Google Scholar 

  67. Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer. 2001;37(13):1590–8.

    Article  CAS  PubMed  Google Scholar 

  68. Lindner M, Bäumler M, Stäbler A. Inter-correlation among the hydrophilic–lipophilic balance, surfactant system, viscosity, particle size, and stability of candelilla wax-based dispersions. Coatings. 2018;8(12):469.

    Article  Google Scholar 

  69. Kumar N, Mandal A. Experimental investigation of PEG 6000/Tween 40/SiO2 NPs stabilized nanoemulsion properties: a versatile oil recovery approach. J Mol Liq. 2020;319:114087.

    Article  CAS  Google Scholar 

  70. Basiri L, Rajabzadeh G, Bostan A. Physicochemical properties and release behavior of Span 60/Tween 60 niosomes as vehicle for α-Tocopherol delivery. LWT. 2017;84:471–8.

    Article  CAS  Google Scholar 

  71. Bhattacharjee J, Verma G, Aswal V, Date AA, Nagarsenker MS, Hassan P. Tween 80− sodium deoxycholate mixed micelles: Structural characterization and application in doxorubicin delivery. J Phys Chem B. 2010;114(49):16414–21.

    Article  CAS  PubMed  Google Scholar 

  72. Budkina O, Demina T, Dorodnykh TY, Melik-Nubarov N, Grozdova I. Cytotoxicity of nonionic amphiphilic copolymers. Polymer Science Series A. 2012;54(9):707–17.

    Article  CAS  Google Scholar 

  73. Zeng L, Xin X, Zhang Y. Development and characterization of promising Cremophor EL-stabilizedo/w nanoemulsions containing short-chain alcohols as a cosurfactant. RSC Adv. 2017;7(32):19815–27.

    Article  CAS  Google Scholar 

  74. Naik RB, Jagtap S, Naik R, Malvankar N, Ratna D. Effect of non-ionic surfactants on thermomechanical properties of epoxy/multiwall carbon nanotubes composites. Prog Org Coat. 2014;77(11):1883–9.

    Article  CAS  Google Scholar 

  75. Marszall L. The determination of the effective HLB of nonionic surfactants by a phenol titration I: relation to cloud point. Fette Seifen Anstrichmittel. 1980;82(1):40–5.

    Article  CAS  Google Scholar 

  76. Liu C, Zhang D, Li Z, Zhang X, Guo W, Zhang L, Ruan S, Long Y. Decreased charge transport barrier and recombination of organic solar cells by constructing interfacial nanojunction with annealing-free ZnO and Al layers. ACS Appl Mater Interfaces. 2017;9(26):22068–75.

    Article  CAS  PubMed  Google Scholar 

  77. Collnot E-M, Baldes C, Schaefer UF, Edgar KJ, Wempe MF, Lehr C-M. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm. 2010;7(3):642–51.

    Article  CAS  PubMed  Google Scholar 

  78. Zhang Y, Zhang C, Chen J, Liu L, Hu M, Li J, Bi H. Trackable mitochondria-targeting nanomicellar loaded with doxorubicin for overcoming drug resistance. ACS Appl Mater Interfaces. 2017;9(30):25152–63.

    Article  CAS  PubMed  Google Scholar 

  79. Gurjar R, Chan CY, Curley P, Sharp J, Chiong J, Rannard S, et al. Inhibitory effects of commonly used excipients on P-glycoprotein in vitro. Mol Pharm. 2018;15(11):4835–42.

    Article  CAS  PubMed  Google Scholar 

  80. Montesinos RN, Béduneau A, Pellequer Y, Lamprecht A. Delivery of P-glycoprotein substrates using chemosensitizers and nanotechnology for selective and efficient therapeutic outcomes. J Control Release. 2012;161(1):50–61.

    Article  Google Scholar 

  81. Yang S, Liu J, Chen Y, Jiang J. Reversal effect of Tween-20 on multidrug resistance in tumor cells in vitro. Biomed Pharmacother. 2012;66(3):187–94.

    Article  CAS  PubMed  Google Scholar 

  82. Shono Y, Nishihara H, Matsuda Y, Furukawa S, Okada N, Fujita T, Yamamoto A. Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. J Pharm Sci. 2004;93(4):877–85.

    Article  CAS  PubMed  Google Scholar 

  83. Wei Z, Yuan S, Hao J, Fang X. Mechanism of inhibition of P-glycoprotein mediated efflux by Pluronic P123/F127 block copolymers: relationship between copolymer concentration and inhibitory activity. Eur J Pharm Biopharm. 2013;83(2):266–74.

    Article  CAS  PubMed  Google Scholar 

  84. Buckingham LE, Balasubramanian M, Emanuele RM, Clodfelter KE, Coon JS. Comparison of solutol HS 15, Cremophor EL and novel ethoxylated fatty acid surfactants as multidrug resistance modification agents. Int J Cancer. 1995;62(4):436–42.

    Article  CAS  PubMed  Google Scholar 

  85. Nielsen RB, Kahnt A, Dillen L, Wuyts K, Snoeys J, Nielsen UG, Holm R, Nielsen CU. Montmorillonite-surfactant hybrid particles for modulating intestinal P-glycoprotein-mediated transport. Int J Pharm. 2019;571:118696.

    Article  CAS  PubMed  Google Scholar 

  86. Zhao W, Alama T, Kusamori K, Katsumi H, Sakane T, Yamamoto A. Effects of 2 polyoxyethylene alkyl ethers on the function of intestinal P-glycoprotein and their inhibitory mechanisms. J Pharm Sci. 2016;105(12):3668–79.

    Article  CAS  PubMed  Google Scholar 

  87. Marsh R, Maurice D. The influence of non-ionic detergents and other surfactants on human corneal permeability. Exp Eye Res. 1971;11(1):43–8.

    Article  CAS  PubMed  Google Scholar 

  88. Saettone MF, Chetoni P, Cerbai R, Mazzanti G, Braghiroli L. Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four β-blockers, and in vitro/in vivo toxic activity. Int J Pharm. 1996;142(1):103–13.

    Article  Google Scholar 

  89. Weiss J, Dormann S-MG, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305(1):197–204.

    Article  CAS  PubMed  Google Scholar 

  90. Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25(4-5):445–53.

    Article  CAS  PubMed  Google Scholar 

  91. Collnot E-M, Baldes C, Wempe MF, Kappl R, Hüttermann J, Hyatt JA, Edgar KJ, Schaefer UF, Lehr CM. Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Mol Pharm. 2007;4(3):465–74.

    Article  CAS  PubMed  Google Scholar 

  92. Hugger ED, Novak BL, Burton PS, Audus KL, Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci. 2002;91(9):1991–2002.

    Article  CAS  PubMed  Google Scholar 

  93. Woodcock D, Linsenmeyer M, Chojnowski G, Kriegler A, Nink V, Webster L, Sawyer WH. Reversal of multidrug resistance by surfactants. Br J Cancer. 1992;66(1):62–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bogman K, Erne-Brand F, Alsenz J, Drewe J. The role of surfactants in the reversal of active transport mediated by multidrug resistance proteins. J Pharm Sci. 2003;92(6):1250–61.

    Article  CAS  PubMed  Google Scholar 

  95. Bittner B, González RB, Bohrmann B, Kuentz M, Huwyler J. Drug-excipient interactions by Vitamin E-TPGS: in vitro studies on inhibition of P-glycoprotein and colonic drug absorption. J Drug Deliv Sci Technol. 2008;18(2):145–8.

    Article  CAS  Google Scholar 

  96. Leve F, Bonfim DP, Fontes G, Morgado-Díaz JA. Gold nanoparticles regulate tight junctions and improve cetuximab effect in colon cancer cells. Nanomedicine. 2019;14(12):1565–78.

    Article  CAS  PubMed  Google Scholar 

  97. Singh AP, Mia MB, Saxena RK. Acid-functionalized single-walled carbon nanotubes alter epithelial tight junctions and enhance paracellular permeability. J Biosci. 2020;45(1):1–12.

    Article  Google Scholar 

  98. Cunningham AJ, Robinson M, Banquy X, Leblond J, Zhu X. Bile acid-based drug delivery systems for enhanced doxorubicin encapsulation: Comparing hydrophobic and ionic interactions in drug loading and release. Mol Pharm. 2018;15(3):1266–76.

    Article  CAS  PubMed  Google Scholar 

  99. Wang J, Xing X, Fang X, Zhou C, Huang F, Wu Z, et al. Cationic amphiphilic drugs self-assemble to the core–shell interface of PEGylated phospholipid micelles and stabilize micellar structure. Philos Trans R Soc A Math Phys Eng Sci. 2013;371(2000):20120309.

    Article  Google Scholar 

  100. Varshosaz J, Hajhashemi V, Soltanzadeh S. Lipid nanocapsule-based gels for enhancement of transdermal delivery of ketorolac tromethamine. J Drug Deliv. 2011;2011:1–7.

    Article  Google Scholar 

  101. Chavanpatil MD, Khdair A, Gerard B, Bachmeier C, Miller DW, Shekhar MP, et al. Surfactant–polymer nanoparticles overcome P-glycoprotein-mediated drug efflux. Mol Pharm. 2007;4(5):730–8.

    Article  CAS  PubMed  Google Scholar 

  102. Singh MS, Lamprecht A. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles. Drug Dev Ind Pharm. 2016;42(2):325–31.

    Article  CAS  PubMed  Google Scholar 

  103. Zastre J, Jackson J, Burt H. Evidence for modulation of P-glycoprotein-mediated efflux by methoxypolyethylene glycol-block-Polycaprolactone amphiphilic diblock copolymers. Pharm Res. 2004;21(8):1489–97.

    Article  CAS  PubMed  Google Scholar 

  104. Batrakova EV, Li S, Vinogradov SV, Alakhov VY, Miller DW, Kabanov AV. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. J Pharmacol Exp Ther. 2001;299(2):483–93.

    CAS  PubMed  Google Scholar 

  105. Hanke U, May K, Rozehnal V, Nagel S, Siegmund W, Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur J Pharm Biopharm. 2010;76(2):260–8.

    Article  CAS  PubMed  Google Scholar 

  106. Zhu S, Huang R, Hong M, Jiang Y, Hu Z, Liu C, Pei Y. Effects of polyoxyethylene (40) stearate on the activity of P-glycoprotein and cytochrome P450. Eur J Pharm Sci. 2009;37(5):573–80.

    Article  CAS  PubMed  Google Scholar 

  107. Negi LM, Tariq M, Talegaonkar S. Nano scale self-emulsifying oil based carrier system for improved oral bioavailability of camptothecin derivative by P-Glycoprotein modulation. Colloids Surf B Biointerfaces. 2013;111:346–53.

    Article  CAS  PubMed  Google Scholar 

  108. Ali I, Saifullah S, El-Haj BM, Ali HS, Yasmeen S, Imran M, et al. Synthesis and characterization of sulfanilamide-based nonionic surfactants and evaluation of their nano-vesicular drug loading application. J Surfactant Deterg. 2020;23(5):973–80.

    CAS  Google Scholar 

  109. Ghosh S, Ray A, Pramanik N. Self-assembly of surfactants: an overview on general aspects of amphiphiles. Biophys Chem. 2020;106429:106429.

    Article  Google Scholar 

  110. Mirgorodskaya АB, Kushnazarova RА, Lukashenko SS, Nikitin EN, Sinyashin KO, Nesterova LM, Zakharova LY. Carbamate-bearing surfactants as effective adjuvants promoted the penetration of the herbicide into the plant. Colloids Surf A Physicochem Eng Asp. 2020;586:124252.

    Article  CAS  Google Scholar 

  111. Alvi MM, Chatterjee P. A prospective analysis of co-processed non-ionic surfactants in enhancing permeability of a model hydrophilic drug. AAPS PharmSciTech. 2014;15(2):339–53.

    Article  CAS  PubMed  Google Scholar 

  112. Fischer SM, Brandl M, Fricker G. Effect of the non-ionic surfactant Poloxamer 188 on passive permeability of poorly soluble drugs across Caco-2 cell monolayers. Eur J Pharm Biopharm. 2011;79(2):416–22.

    Article  CAS  PubMed  Google Scholar 

  113. Corazza M, Lauriola MM, Bianchi A, Zappaterra M, Virgili A. Irritant and sensitizing potential of eight surfactants commonly used in skin cleansers: an evaluation of 105 patients. Dermatitis. 2010;21(5):262–8.

    Article  PubMed  Google Scholar 

  114. Olmez-Hanci T, Arslan-Alaton I, Dursun D, Genc B, Mita D, Guida M, et al. Degradation and toxicity assessment of the nonionic surfactant Triton™ X-45 by the peroxymonosulfate/UV-C process. Photochem Photobiol Sci. 2015;14(3):569–75.

    Article  CAS  PubMed  Google Scholar 

  115. Deese RD, LeBlanc MR, Cook RL. Surfactant toxicity to Artemia franciscana and the influence of humic acid and chemical composition. Environ Chem. 2015;13(3):507–16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding received by the authors to declare.

Author information

Authors and Affiliations

Authors

Contributions

Sachin Rathod: writing—original draft preparation and editing; Heta desai: writing—original draft. Rahul Patil: reviewing and editing; Jayant Sarolia: writing—review and editing.

Corresponding author

Correspondence to Jayant Sarolia.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, S., Desai, H., Patil, R. et al. Non-ionic Surfactants as a P-Glycoprotein(P-gp) Efflux Inhibitor for Optimal Drug Delivery—A Concise Outlook. AAPS PharmSciTech 23, 55 (2022). https://doi.org/10.1208/s12249-022-02211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02211-1

KEY WORDS

Navigation