Skip to main content

Advertisement

Log in

Transdermal Delivery of an Anti-Cancer Drug via W/O Emulsions Based on Alkyl Polyglycosides and Lecithin: Design, Characterization, and In Vivo Evaluation of the Possible Irritation Potential in Rats

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this work was to develop w/o emulsions that could be safely used to promote transdermal delivery of 5-fluorouracil (5-FU). Two pseudo-ternary phase diagrams comprising oleoyl-macrogol glycerides, water, and a surfactant/co-surfactant (S/CoS) mixture of lecithin, ethanol, and either coco glucoside or decyl glucoside were investigated for their potential to develop promising 5-FU emulsions. Six systems were selected and subjected to thermodynamic stability tests; heat–cool cycles, centrifugation, and finally freeze–thaw cycles. All systems passed the challenges and were characterized for transmission electron microscopy, droplet size, rheological behavior, pH, and transdermal permeation through newly born mice skin in Franz diffusion cells. The systems had spherical droplets ranging in diameter from 1.81 to 2.97 μm, pH values ranging from 7.50 to 8.49 and possessed Newtonian flow. A significant (P < 0.05) increase in 5-FU permeability parameters as steady-state flux, permeability coefficient was achieved with formula B5 comprising water (5% w/w), S/CoS mixture of lecithin/ethanol/decyl glucoside (14.67:12.15:18.18% w/w, respectively) and oleoyl-macrogol glycerides (50% w/w). When applied to shaved rat skin, this system was well tolerated with only moderate skin irritation that was recovered within 12 h. Indeed, minor histopathologic changes were observed after 5-day treatment. Further studies should be carried out, in the future, to investigate the potentiality of this promising system to promote transdermal delivery of 5-FU through human skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. University of Sciences of Philadelphia (ed): Remington: The science and practice of pharmacy, 21st edn. Lippincott Williams & Wilkins, Philadelphia (2005).

  2. Saif MW, Choma A, Salamone SJ, Chu E. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst. 2009;101(22):1543–52.

    Article  PubMed  CAS  Google Scholar 

  3. Sweetman S. Martindale: The complete drug reference. 34th ed. London: The Pharmaceutical Press; 2005. Electronic version.

    Google Scholar 

  4. Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16(4):215–37.

    Article  PubMed  CAS  Google Scholar 

  5. Liu F, Xiao YY, Ping QN, Yang C. Water in oil microemulsions for transdermal delivery of fluorouracil. Yao Xue Xue Bao. 2009;44(5):540–7.

    PubMed  CAS  Google Scholar 

  6. Gupta RR, Jain SK, Varshney M. AOT water-in-oil microemulsions as a penetration enhancer in transdermal drug delivery of 5-fluorouracil. Colloids Surf, B. 2005;41:25–32.

    Article  CAS  Google Scholar 

  7. Robertsand WJ, Sloan KB. Topical delivery of 5-fluorouracil (5-FU) by 3-alkylcarbonyloxymethyl-5-FU prodrugs. J Pharm Sci. 2003;92:1028–36.

    Article  Google Scholar 

  8. Beall HD, Sloan KB. Topical delivery of 5-fluorouracil (5-FU) by 1, 3-bisalkylcarbonyl-5-FU prodrugs. Int J Pharm. 2002;231(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  9. Sasaki H, Kojima M, Mori Y, Nakamura J, Shibasaki J. Enhancing effect of pyrrolidone derivatives on transdermal penetration of 5-fluorouracil, triamcinolone acetonide, indomethacin, and flurbiprofen. J Pharm Sci. 1991;80(6):533–8.

    Article  PubMed  CAS  Google Scholar 

  10. Goodman M, Barry BW. Action of penetration enhancers on human skin as assessed by the permeation of model drugs 5-fluorouracil and estradiol. I. Infinite dose technique. J Invest Dermatol. 1988;91(4):323–7.

    Article  PubMed  CAS  Google Scholar 

  11. Trotta M, Ugazio E, Peira E, Pulitano C. Influence of ion pairing on topical delivery of retinoic acid from microemulsions. J Control Release. 2003;86:315–21.

    Article  PubMed  CAS  Google Scholar 

  12. Rybinski WV, Hill K. Alkyl polyglycosides-properties and applications of a new class of surfactants. Angew Chem Int. 1998;37:1328–45.

    Article  Google Scholar 

  13. Garcia MT, Ribosa L, Campos E, Leal JS. Ecological properties of alkyl glucosides. Chemosphere. 1997;35:545–56.

    Article  CAS  Google Scholar 

  14. Pezroni I, Galet L, Clausse D. Surface interaction between a protein monolayer and surfactants and its correlation with skin irritation by surfactants. J Colloid Interface Sci. 1996;180:285–9.

    Article  Google Scholar 

  15. Mehling A, Kleber M, Henson H. Comparative studies on the ocular and dermal irritation potential of surfactants. Food Chem Toxicol. 2005;45:747–58.

    Google Scholar 

  16. Savic SD, Savic MM, Tamburic S, Vesic SA, Vuleta GM, Müller-Goymann CC. An alkyl polyglucoside surfactant as a prospective pharmaceutical excipient for topical formulations: the influence of oil polarity on the colloidal structure and hydrocortisone in vitro/in vivo permeation. Eur J Pharm Sci. 2007;30:441–50.

    Article  PubMed  CAS  Google Scholar 

  17. Pakpayat N, Nielloud FR, Fortuné C, Peteilh T, Villarreal A, Grillo I, et al. Formulation of ascorbic acid microemulsions with alkyl polyglycosides. Eur J Pharm Biopharm. 2009;72:444–52.

    Article  PubMed  CAS  Google Scholar 

  18. Graf A, Ablinger E, Peters S, Zimmer A, Hook S, Rades T. Microemulsions containing lecithin and sugar-based surfactants: Nano-particle templates for delivery of proteins and peptides. Int J Pharm. 2008;350:351–60.

    Article  PubMed  CAS  Google Scholar 

  19. Rybinski WV, Guchkenbiehl B, Tesmann H. Influence of co-surfactants on microemulsions with alkyl polyglycosides. Colloids Surf A. 1998;142:333–42.

    Article  Google Scholar 

  20. Jadhav KR, Kadam VJ, Pisal SS. Formulation and evaluation of lecithin organogel for topical delivery of fluconazole. Curr Drug Deliv. 2009;6(2):174–83.

    Article  PubMed  CAS  Google Scholar 

  21. Yuan JS, Ansari M, Samaan M, Acosta EJ. Linker-based lecithin microemulsions for transdermal delivery of lidocaine. Int J Pharm. 2008;349(1–2):130–43.

    Article  PubMed  CAS  Google Scholar 

  22. Tabbakhian M, Tavakoli N, Jaafari MR, Daneshamouz S. Enhancement of follicular delivery of finasteride by liposomes and niosomes 1. In vitro permeation and in vivo deposition studies using hamster flank and ear models. Int J Pharm. 2006;323(1–2):1–10.

    Article  PubMed  CAS  Google Scholar 

  23. Bendas ER, Tadros MI. Enhanced transdermal delivery of salbutamol sulfate via ethosomes. AAPS PharmSciTech. 2007;8(4):107.

    Article  Google Scholar 

  24. Shafiq S, Shakeel F, Talegaonkar S, Ahmad FJ, Khar RK, Ali M. Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur J Pharm Biopharm. 2007;66(2):227–34.

    Article  PubMed  CAS  Google Scholar 

  25. Chew NYK, Chan HK. Effect of powder polydispersity on aerosol generation. J Pharm Sci. 2002;5(2):162–8.

    CAS  Google Scholar 

  26. Rawlins EA. Rheology. In: Carless JE, editor. Bentley’s textbook of pharmaceutics. 8th ed. London: Bailliére Tindall; 1977. p. 123–39.

    Google Scholar 

  27. Das MK, Bhattacharya A, Ghosal SK. Effect of different terpene-containing essential oils on percutaneous absorption of trazodone hydrochloride through mouse epidermis. Drug Deliv. 2006;3:425–31.

    Article  Google Scholar 

  28. El Maghraby GM, Williams AC, Barry BW. Skin delivery of estradiol from deformable and traditional liposomes: mechanistic studies. J Pharm Pharmacol. 1999;51:1123–34.

    Article  PubMed  Google Scholar 

  29. Ferreira LAM, Seiller M, Grossiord JL, Marty JP, Wepierre J. Vehicle influence on in vitro release of glucose: w/o, w/o/w and o/w systems compared. J Control Release. 1995;33:349–56.

    Article  CAS  Google Scholar 

  30. Shakeel F, Baboota S, Ahuja A, Ali J, Aqil M, Shafiq S. Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech. 2007;8(4):104.

    Article  Google Scholar 

  31. Jibry N, Murdan S. In vivo investigation, in mice and in man, into the irritation potential of novel amphiphilogels being studied as transdermal drug carriers. Eur J Pharm Biopharm. 2004;58:107–19.

    Article  PubMed  CAS  Google Scholar 

  32. Draize J, Woodard G, Calvery H. Methods for the study of irritation and toxicity of substances topically applied to skin and mucous membranes. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  33. Banchroft JD, Stevens A, Turner DR. Theory and practice of histological techniques. 4th ed. New York: Churchil Livingstone; 1996.

    Google Scholar 

  34. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 1995;45:89–121.

    Article  Google Scholar 

  35. Tenjarla S. Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 1999;16:461–521.

    PubMed  CAS  Google Scholar 

  36. Kriwet K, Miiller-Goymann CC. Diclofenac release from phospholipid drug systems and permeation through excised human stratum corneum. Int J Pharm. 1995;125:231–42.

    Article  CAS  Google Scholar 

  37. Stubenrauch C, Paeplow B, Findenegg GH. Microemulsions supported by Octyl monoglucoside and geraniol. 1. The role of the alcohol in the interfacial layer. Langmuir. 1997;13(14):3652–8.

    Article  CAS  Google Scholar 

  38. Azeem A, Khan ZI, Aqil M, Ahmad FJ, Khar RK, Talegaonkar S. Microemulsions as a surrogate carrier for dermal drug delivery. Drug Dev Ind Pharm. 2009;35(5):525–47.

    Article  PubMed  CAS  Google Scholar 

  39. Subramanian N, Ghosal SK, Acharya A, Moulik SP. Formulation and physicochemical characterization of microemulsion system using isopropyl myristate, medium-chain glyceride, polysorbate 80 and water. Chem Pharm Bull. 2005;53(12):1530–5.

    Article  PubMed  CAS  Google Scholar 

  40. Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10(3):808–19.

    Article  PubMed  CAS  Google Scholar 

  41. Rhee YS, Choi JG, Park ES, Chi SC. Transdermal delivery of ketoprofen using microemulsions. Int J Pharm. 2001;228:161–70.

    Article  PubMed  CAS  Google Scholar 

  42. Walters KA, Brain KR, Green DM, James VG, Watkinson AC, Sands RH. Comparison of the transdermal delivery of estradiol from two gel formulations. Maturitas. 1998;29:189–95.

    Article  PubMed  CAS  Google Scholar 

  43. Lee CH, Maibach HI. The sodium lauryl sulphate model: an overview. Contact Dermat. 1995;33:1–7.

    Article  Google Scholar 

  44. Feldman LD, Ajani JA. Fluorouracil-associated dermatitis of the hands and feet. JAMA. 1985;254(24):3479–85.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Adel Bakir (Prof. of Pathology, Cairo University, Egypt) for his kind help in preparation and histopathologic examination of rat skin biopsies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ibrahim Tadros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ElMeshad, A.N., Tadros, M.I. Transdermal Delivery of an Anti-Cancer Drug via W/O Emulsions Based on Alkyl Polyglycosides and Lecithin: Design, Characterization, and In Vivo Evaluation of the Possible Irritation Potential in Rats. AAPS PharmSciTech 12, 1–9 (2011). https://doi.org/10.1208/s12249-010-9557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9557-y

KEY WORDS

Navigation