Skip to main content

Advertisement

Log in

Preformulation and characterization of raloxifene-loaded lipid nanoparticles for transdermal administration

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Transdermal administration of raloxifene hydrochloride (RLX)-loaded nanostructured lipid carriers (NLCs) has been proposed to circumvent its low oral bioavailability (2%). Preformulation studies were carried out to evaluate drug-excipient compatibility of various adjuvants commonly used for NLC preparation (waxes, cholesterol, compritol, gelucire, span 60, span 80, span 85, tween 80, poloxamer 188, oleic acid, caprylic/capric triglyceride, and castor oil). It was used differential scanning calorimetry (DSC), isothermal stress testing (IST), and solubility studies. The most promising excipients were chosen for NLC obtention, and full characterization was done, including in vitro skin permeation. DSC curves suggested drug-excipient interaction among some compounds, and the IST study showed incompatibility of RLX with waxes, compritol, cholesterol, span 60, and poloxamer 188. Solubility studies helped select gelucire, caprylic/capric triglyceride, span 80, and tween 80 for NLC production. Twelve NLCs were obtained (NLC1 to NLC12), but NLC7 and NLC8 were the most promising ones. In vitro release studies demonstrated that NLC7 and NLC8 were able to control RLX release (14.74 and 9.07% at 24 h, respectively) compared with the unloaded drug (> 90% at 24 h). Unloaded RLX did not permeate the diffusion cells’ receptor medium and showed higher drug skin retention (11-fold) than RLX-loaded NLC. NLC reduced RLX skin retention, favoring drug permeation to deeper skin layers. NLC7 increased drug flux is 2.4-fold. NLC7 is a promising formulation for RLX transdermal drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ravi PR, Aditya N, Kathuria H, et al. Lipid nanoparticles for oral delivery of raloxifene: optimization, stability, in vivo evaluation and uptake mechanism. Eur J Pharm Biopharm. 2014;87:114–24.

    Article  CAS  PubMed  Google Scholar 

  2. Tran TH, Poudel BK, Marasini N, Chi S-C, et al. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent. Int J Pharm. 2013;443:50–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kushwaha AK, Vuddanda PR, Karunanidhi P, Singh SK, et al. Development and evaluation of solid lipid nanoparticles of raloxifene hydrochloride for enhanced bioavailability. Biomed Res Int. 2013;2013:584–649.

    Article  Google Scholar 

  4. Nabi-Meibodi M, Vatanara A, Najafabadi AR, Rouini MR, et al. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloid Surface B. 2013;112:408–14.

    Article  CAS  Google Scholar 

  5. Mahmood S, Taher M, Mandal UK. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application. Int J Nanomedicine. 2014;9:4331–46.

    PubMed  PubMed Central  Google Scholar 

  6. Thakkar HP, Savsani H, Kumar P. Ethosomal Hydrogel of Raloxifene HCl: Statistical Optimization & Ex Vivo Permeability Evaluation Across Microporated Pig Ear Skin. Curr Drug Deliv. 2016;13:1111–22.

    Article  CAS  PubMed  Google Scholar 

  7. Banerjee R. Overcoming the stratum corneum barrier: a nano approach. Drug Deliv and Transl Res. 2013;3:205–8.

    Article  Google Scholar 

  8. Prow TW, Grice JE, Lin LL, Faye R, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63:470–91.

    Article  CAS  PubMed  Google Scholar 

  9. Fang DL, Chen Y, Xu B, Ren K, et al. Sevelopment of lipid-shell and polymer core nanoparticles with water-soluble salidroside for anti-cancer therapy. Int J Mol Sci. 2014;15:3373–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.

    Article  CAS  PubMed  Google Scholar 

  11. Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci. 2018;112:159–67.

    Article  PubMed  Google Scholar 

  12. Gordillo-Galeano A, Elizabeth C, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308.

    Article  CAS  PubMed  Google Scholar 

  13. Joshi MD, Müller RH. Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm. 2009;71:161–72.

    Article  CAS  PubMed  Google Scholar 

  14. Teixeira MC, Carbonea C, Souto EB. Beyond liposomes: recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery. Prog Lipid Res. 2017;68:1–11.

    Article  CAS  PubMed  Google Scholar 

  15. Perteghella S, Mandracchia D, Torre ML, Tamma R, Ribatti D, Trapani A, Tripodo G. Anti-angiogenic activity of uncoated- and N, O-carboxymethyl-chitosan surface modified-Gelucire® 50/13 based solid lipid nanoparticles for oral delivery of curcumin. J Drug Deliv Sci Technol. 2020;56:101494.

    Article  CAS  Google Scholar 

  16. Silva LAD, Teixeira FV, Serpa RC, Esteves NL, et al. Evaluation of carvedilol compatibility with lipid excipients for the development of lipid-based drug delivery systems. J Therm Anal Calorim. 2016;123:2337–44.

    Article  CAS  Google Scholar 

  17. Teixeira F, Alves G, Ferreira M, Taveira SF, et al. Preformulation studies to guide the development of raloxifene lipid-based delivery systems. J Therm Anal Calorim. 2018;132:365–71.

    Article  CAS  Google Scholar 

  18. Verma RK, Garg S. Selection of excipients for extended release formulations of glipizide through drug-excipient compatibility testing. Adv Drug Deliv Rev. 2005;38:633–44.

    CAS  Google Scholar 

  19. Chadha R, Bhandari S. Drug-excipient compatibility screening–role of thermoanalytical and spectroscopic techniques. J Pharmaceut Biomed. 2014;87:82–97.

    Article  CAS  Google Scholar 

  20. Pani NR, Nath LK, Acharya S. Compatibility studies of nateglinide with excipients in immediate release tablets. Acta Pharmaceut. 2011;61:237–47.

    Article  CAS  Google Scholar 

  21. Kaur A, Goindi S, Katare OP. Thermal analysis and quantitative characterization of compatibility between diflunisal and lipid excipients as raw materials for development of solid lipid nanoparticles. Thermochim Acta. 2016;643:23–32.

    Article  CAS  Google Scholar 

  22. Kaur R, Sinha VR. Use of thermal and non thermal techniques for assessing compatibility between mirtazapine and solid lipids. J Pharm Biomed Anal. 2018;161:144–58.

    Article  CAS  PubMed  Google Scholar 

  23. Kumar N, Goindi S, Saini B, et al. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J Therm Anal Calorim. 2014;115:2375–83.

    Article  CAS  Google Scholar 

  24. Khosa A, Reddi S, Saha RN. Nanostructured lipid carriers for site-specific drug delivery. Biomed Pharmacother. 2018;103:598–613.

    Article  CAS  PubMed  Google Scholar 

  25. Silva LAD, Cintra ER, Alonso ECP, et al. Selection of excipients for the development of carvedilol loaded lipid-based drug delivery systems. J Therm Anal Calorim. 2017;130:1593–604.

    Article  CAS  Google Scholar 

  26. USP. United States Pharmacopeia and National Formulary. 38th ed. Rockville: United States Pharmacopeia Convention; 2015.

    Google Scholar 

  27. Patel K, Padhye S, Nagarsenker M. Duloxetine HCl lipid nanoparticles: preparation, characterization, and dosage form design. AAPS PharmSciTech. 2011;13:125–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Setthacheewakul S, Mahattanadul S, Phadoongsombut N, et al. Development and evaluation of self-microemulsifying liquid and pellet formulations of curcumin, and absorption studies in rats. Eur J Pharm Biopharm. 2010;76:475–85.

    Article  CAS  PubMed  Google Scholar 

  29. Patil PH, Belgamwar VS, Patil PR, et al. Enhancement of solubility and dissolution rate of poorly water soluble raloxifene using microwave induced fusion method. Braz J Pharm Sci. 2013;49:571–8.

    Article  CAS  Google Scholar 

  30. Teixeira FV, Alves G, Ferreira M, et al. Preformulation studies to guide the development of raloxifene lipid-based delivery systems. J Therm Anal Calorim. 2018;132:365–71.

    Article  CAS  Google Scholar 

  31. FDA. Guidance for industry: SUPAC-SS nonsterile semisolid dosage forms. Scale-up and pos approval changes: chemistry, manufacturing and controls: in vitro release testing and in vivo bioequivalence documentation. In: Research CfDEa, editor. United States 1997.

  32. OECD. Guideline 428: skin absorption: in vitro methods. In: Development OfEC-oa, editor. Paris 2004.

  33. Dash S, Murthy PN, Nath L, et al. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217–23.

    CAS  PubMed  Google Scholar 

  34. Tiţa B, Fulias A, Bandur G, et al. Compatibility study between ketoprofen and pharmaceutical excipients used in solid dosage forms. J Pharm Biomed. 2011;56:221–7.

    Article  Google Scholar 

  35. Weiss-Angeli V, Poletto FS, de Marco SL, et al. Sustained antioxidant activity of quercetin-loaded lipid-core nanocapsules. J Nanosci Nanotechnol. 2012;12:2874–80.

    Article  CAS  PubMed  Google Scholar 

  36. Singh VK, Pramanik K, Ray SS, et al. Development and characterization of sorbitan monostearate and sesame oil-based organogels for topical delivery of antimicrobials. AAPS PharmSciTech. 2015;16:293–305.

    Article  CAS  PubMed  Google Scholar 

  37. Kishore RS, Pappenberger A, Dauphin IB, et al. Degradation of polysorbates 20 and 80: studies on thermal autoxidation and hydrolysis. J Pharm Sci. 2011;100:721–31.

    Article  CAS  PubMed  Google Scholar 

  38. Shah NV, Seth AK, Balaraman R, et al. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: design and in vivo study. J Adv Res. 2016;7:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lanigan RS, Yamarik TA. Final report on the safety assessment of sorbitan caprylate, sorbitan cocoate, sorbitan diisostearate, sorbitan dioleate, sorbitan distearate, sorbitan isostearate, sorbitan olivate, sorbitan sesquiisostearate, sorbitan sesquistearate, and sorbitan triisostearate. Int J Toxicol. 2002;21:93–112.

    Article  CAS  PubMed  Google Scholar 

  40. Rowe R, et al. Hand Book of Pharmaceutical Excipients 2006.

  41. Yeh CK, Peng SL, Hsu IY. Co-surfactant of ethoxylated sorbitan ester and sorbitan monooleate for enhanced flushing of tetrachloroethylene. Chemosphere. 2002;49:421–30.

    Article  CAS  PubMed  Google Scholar 

  42. Elsheikh MA, Elnaggar YSR, Gohar EY, et al. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal. Int J Nanomedicine. 2012;7:3787–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tran TH, Poudel BK, Marasini N, et al. Preparation and evaluation of raloxifene-loaded solid dispersion nanoparticle by spray-drying technique without an organic solvent. Int J Pharm. 2013;443:50–7.

    Article  CAS  PubMed  Google Scholar 

  44. Patel J, Kevin G, Patel A, et al. Design and development of a self-nanoemulsifying drug delivery system for telmisartan for oral drug delivery. Int J Pharm Investig. 2011;1:112–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosenblatt KM, Bunjes H. Evaluation of the drug loading capacity of different lipid nanoparticle dispersions by passive drug loading. Eur J Pharm Biopharm. 2017;117:49–59.

    Article  CAS  PubMed  Google Scholar 

  46. Souza LG, Silva EJ, Martins AL, et al. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur J Pharm Biopharm. 2011;79:189–96.

    Article  CAS  PubMed  Google Scholar 

  47. Murthy A, Ravi PR, Kathuria H, et al. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers. Nanomaterials. 2020;10:1–17.

    Article  Google Scholar 

  48. Burra M, Jukanti R, Janga KY, et al. Enhanced intestinal absorption and bioavailability of raloxifene hydrochloride via lyophilized solid lipid nanoparticles. Adv Powder Technol. 2013;24:393–402.

    Article  CAS  Google Scholar 

  49. Nekkantia V, Venkateshwarlu V, Pillai R. Preparation, characterization and in vivo evaluation of raloxifene hydrochloride solid lipid nanoparticles. Pharm Nanotechnol. 2013;1:68–77.

    Article  Google Scholar 

  50. Pereira MN, Schulte HL, Duarte N, et al. Solid effervescent formulations as new approach for topical minoxidil delivery. Eur J Pharm Sci. 2017;96:411–9.

    Article  CAS  PubMed  Google Scholar 

  51. Andrade LM, Silva LAD, Krawczyk-Santos AP, et al. Improved tacrolimus skin permeation by co-encapsulation with clobetasol in lipid nanoparticles: study of drug effects in lipid matrix by electron paramagnetic resonance. Eur J Pharm Biopharm. 2017;119:142–9.

    Article  CAS  PubMed  Google Scholar 

  52. Karjiban RA, Basri M, Rahman MB, et al. Molecular dynamics simulation of palmitate ester self-assembly with diclofenac. Int J Mol Sci. 2012;13:9572–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alonso C, Lucas R, Barba C, et al. Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol. J Pharm Pharmacol. 2015;67:900–8.

    Article  CAS  PubMed  Google Scholar 

  54. Morello KC, Wurz GT, DeGregorio MW. Pharmacokinetics of selective estrogen receptor modulators. Clin Pharmacokinet. 2003;42:361–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Chemical Industry of Goiás State (IQUEGO) to provide the necessary facilities and Dr. Luis Antonio Dantas Silva to contribute to DSC measurements.

Funding

This work was supported by Brazilian agencies CNPq, CAPES, and FAPEG.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have read and approved the manuscript. The study concept was performed by Taveira, S. F. as the study design. Alves, G. L., Teixeira, F. V., Da Rocha, P. B. R., Krawczyk-Santos, A. P., and Andrade, L. M. had performed the data acquisition. Andrade, L. M. and Krawczyk-Santos, A. P had performed quality control of data. Cunha-Filho M., Marreto, R. N., and Taveira, S. F. had carried out data analysis and interpretation. Alves, G. L. had performed the statistical analysis. Taveira, S. F., Cunha-Filho M., and Marreto, R. N. had written and edited the manuscript for intellectual content. All the authors were agreed to be accountable for all aspects of work, ensuring integrity and accuracy.

Corresponding author

Correspondence to Stephânia F. Taveira.

Ethics declarations

Ethics approval and consent to participate

Experimental procedures were performed according to ethical standards, especially as Normative Resolutions of the National Council for the Control of Animal Experimentation—CONCEA. Approval in June of 2017 by the Ethics Committee on the Use of Animals/CEUA-PRPI-UFG (process number 053/17). The consent to participate does not apply to this study.

Consent for publication

The approval for publication, including all formats irrespective of time and language, had been taken from all authors.

Conflict interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1691 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, G.L., Teixeira, F.V., da Rocha, P.B.R. et al. Preformulation and characterization of raloxifene-loaded lipid nanoparticles for transdermal administration. Drug Deliv. and Transl. Res. 12, 526–537 (2022). https://doi.org/10.1007/s13346-021-00949-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00949-y

Keywords

Navigation