Skip to main content
Log in

Influence of Drying Procedure and of Low Degree of Substitution on the Structural and Drug Release Properties of Carboxymethyl Starch

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the influence of drying methods and low range of degrees of substitution (DS) on the structural, physicochemical, and drug-release properties of carboxymethyl high-amylose starch (CMS). CMS with three DS of 0.03, 0.14, and 0.25 was synthesized and dried by either solvent precipitation (SP), spray drying (SD), or lyophilization (Ly). DS had an influence on the crystalline structure of CMS. It was found that a DS of 0.14 or higher induced a modification of polymorphism. The drying method and the DS had both an impact on the physical properties of the CMS powder which can further influence the formulation characteristics and drug-release properties from monolithic tablets. The CMS with DS of 0.14 and 0.25 dried by SP or SD presented good excipient properties in terms of compressibility. With acetaminophen (20%) as tracer, the monolithic CMS tablets showed controlled drug release over 17 h for DS of 0.14 and 10 h for DS of 0.25, almost independent of pH, suggesting interesting properties for sustained release applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siepmann J, Peppas NA. Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the “sequential layer” model). Pharm Res. 2000;17:1290–8.

    Article  CAS  PubMed  Google Scholar 

  2. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3:198–204.

    Article  CAS  PubMed  Google Scholar 

  3. Brouillet F, Bataille B, Cartilier L. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: formulation aspects and in vitro drug-release evaluation. Int J Pharm. 2008;356:52–60.

    Article  CAS  PubMed  Google Scholar 

  4. Zobel HF. Starch crystal transformations and their industrial importance. Starch - Stärke. 1988;40:1–7.

    Article  CAS  Google Scholar 

  5. Wurzburg OB. Introduction. In: Wurzburg OB, editor. Modified starches: properties and uses. Boca Raton: CRC; 1986. p. 4–15.

    Google Scholar 

  6. Crochet P, Beauxis-Lagrave T, Noel TR, Parker R, Ring SG. Starch crystal solubility and starch granule gelatinisation. Carbohydr Res. 2005;340:107–13.

    Article  CAS  PubMed  Google Scholar 

  7. Ispas-Szabo P, De Koninck P, Calinescu C, Mateescu MA (2007) Novel carboxymethyl starch excipients for oral dosage forms. Transaction of the 34th Annual meeting and exposition of the Controlled Release Society; Long Beach, California

  8. Calinescu C, Nadeau E, Mulhbacher J, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch for F4 fimbriae gastro-resistant oral formulation. Int J Pharm. 2007;343:18–25.

    Article  CAS  PubMed  Google Scholar 

  9. Calinescu C, Mulhbacher J, Nadeau E, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch (CM-HAS) as excipient for Escherichia coli oral formulations. Eur J Pharm Biopharm. 2005;60:53–60.

    Article  CAS  PubMed  Google Scholar 

  10. Calinescu C, Mateescu MA. Carboxymethyl high amylose starch: Chitosan self-stabilized matrix for probiotic colon delivery. Eur J Pharm Biopharm. 2008;70:582–9.

    Article  CAS  PubMed  Google Scholar 

  11. Heinze T, Koschella A. Carboxymethyl ethers of cellulose and starch - A review. Macromol Symp. 2005;223:13–40.

    Article  CAS  Google Scholar 

  12. Brittain HG, Bogdanowich SJ, Bugay DE, DeVincentis J, Lewen G, Newman AW. Physical characterization of pharmaceutical solids. Pharm Res. 1991;8:963–73.

    Article  CAS  PubMed  Google Scholar 

  13. Jamzad S, Tutunji L, Fassihi R. Analysis of macromolecular changes and drug release from hydrophilic matrix systems. Int J Pharm. 2005;292:75–85.

    Article  CAS  PubMed  Google Scholar 

  14. Korhonen O, Pohja S, Peltonen S, Suihko E, Vidgren M, Paronen P et al. Effects of physical properties for starch acetate powders on tableting. AAPS PharmSciTech. 2002;3:1–9.

    Article  Google Scholar 

  15. Ispas-Szabo P, Ravenelle F, Hassan I, Preda M, Mateescu MA. Structure-properties relationship in cross-linked high-amylose starch for use in controlled drug release. Carbohydr Res. 1999;323:163–75.

    Article  Google Scholar 

  16. Mulhbacher J, Ispas-Szabo P, Lenaerts V, Mateescu MA. Cross-linked high amylose starch derivatives as matrices for controlled release of high drug loadings. J Control Release. 2001;76:51–8.

    Article  CAS  PubMed  Google Scholar 

  17. Stojanovic Z, Jeremic K, Jovanovic S, Lechner MD. A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch. Starch - Stärke. 2005;57:79–83.

    Article  CAS  Google Scholar 

  18. Chen J, Jane J. Preparation of granular cold-water-soluble starches by alcoholic-alkaline treatment. Cereal Chem. 1994;71:618–22.

    CAS  Google Scholar 

  19. Volkert B, Loth F, Lazik W, Engelhardt J. Highly substituted carboxymethyl starch. Starch - Stärke. 2004;56:307–14.

    Article  CAS  Google Scholar 

  20. US Pharmacopeia XXXI. US Pharmacopeial Convention. Rockville, MD2008.

  21. Carr RL. Classifying flow properties of solids. Chem Eng. 1965;72:69–72.

    CAS  Google Scholar 

  22. Hausner HH. Friction conditions in a mass of metal powders. Int J Powder Metall. 1967;3:7–13.

    Google Scholar 

  23. Takahashi H, Chen R, Okamoto H, Danjo K. Acetaminophen particle design usingchitosan and a spray-drying technique. Chem Pharm Bull. 2005;53:37–41.

    Article  CAS  PubMed  Google Scholar 

  24. Ritger PL, Peppas NA. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release. 1987;5:37–42.

    Article  CAS  Google Scholar 

  25. Cairns P, Bogracheva TY, Ring SG, Hedley CL, Morris VJ. Determination of the polymorphic composition of smooth pea starch. Carbohydr Polym. 1997;32:275–82.

    Article  CAS  Google Scholar 

  26. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym. 1998;36:277–84.

    Article  CAS  Google Scholar 

  27. Shiftan D, Ravenelle F, Mateescu MA, Marchessault RH. Change in the V/B polymorph ratio and T1 relaxation of epichlorohydrin crosslinked high amylose starch excipient. Starch - Stärke. 2000;52:186–95.

    Article  CAS  Google Scholar 

  28. Fuhrer C. Interparticulate attraction mechanisms. In: Aldernborn G, Nystrom C, editors. Pharmaceutical powder compaction technology. New York: Marcel Dekker; 1996. p. 1–15.

    Google Scholar 

  29. Desai DH, Patel KC, Patel RD. Thermal properties of amylose and its derivatives part I. Starch - Stärke. 1976;28:377–81.

    Article  CAS  Google Scholar 

  30. Daniel JR, Whistler RL, Röper H, Elvers B. Starch. In: Bohnet M, Bellussi G, Bus J, Cornils B, Drauz K, Greim H, et al., editors. Ullmann's Encyclopedia of Industrial Chemistry, Electronic release. 7th ed. Wiley-VCH Verlag GmbH & Co. 2007. Accessed 25 mar 2009.

  31. Rowe RC, Sheskey PJ, Owen SC. Handbook of Pharmaceutical Excipients. 5th ed. London: Pharmaceutical; 2006.

    Google Scholar 

  32. Adolfsson Å, Olsson H, Nyström C. Effect of particle size and compaction load on interparticulate bonding structure for some pharmaceutical materials studied by compaction and strength characterisation in butanol. Eur J Pharm Biopharm. 1997;44:243–51.

    Article  CAS  Google Scholar 

  33. Garekani HA, Ford JL, Rubinstein MH, Rajabi-Siahboomi AR. Effect of compression force, compression speed, and particle size on the compression properties of paracetamol. Drug Dev Ind Pharm. 2001;27:935–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation (CFI) support to M. A. Mateescu is gratefully acknowledged. Ph. D. graduate studentship from NSERC and Corealis Pharma Inc. (Montreal, Canada) awarded to M. Lemieux is also gratefully acknowledged. Special thanks are due to Dr. Roch Thibert for insightful comments on the manuscript and to F. Byette, R. Mineau and M. Preda for providing technical support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Alexandru Mateescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemieux, M., Gosselin, P. & Mateescu, M.A. Influence of Drying Procedure and of Low Degree of Substitution on the Structural and Drug Release Properties of Carboxymethyl Starch. AAPS PharmSciTech 11, 775–785 (2010). https://doi.org/10.1208/s12249-010-9437-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9437-5

Key words

Navigation