Skip to main content

Advertisement

Log in

Carboxymethyl Starch Excipients for Drug Chronodelivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Carboxymethyl starch (CMS) is a pH-responsive excipient exhibiting also interesting properties for applications in delayed drug delivery systems. This work was aimed to investigate the release properties of monolithic and dry-coated tablets based on ionic sodium CMS and on protonated CMS, formulated with three model tracers: acetaminophen, acetylsalicylic acid (ASA), and sodium diclofenac. The sodium or protonated CMS were obtained from the same CMS synthesis by controlling the final pH of reaction media. The two forms of CMS were confirmed by the Fourier transform infrared spectroscopy. The in vitro dissolution profiles for monolithic and double core tablets were different and allowed a better understanding of characteristics of the two excipient forms. It was found that the protonated CMS exhibited a better stability in simulated gastric fluid in comparison to its sodium salt in monolithic dosage forms, whereas both excipients afforded a complete gastric protection of drugs when formulated as dry-coated dosages. Determination of water uptake and erosion rate of monolithic matrices based on the two CMS forms showed different mechanisms involved in the delivery of the three model active molecules in simulated intestinal media. When pancreatic enzymes were added in dissolution media, the drug release was accelerated showing that CMS is still a substrate for alpha-amylase. Both sodium and protonated starch excipients, formulated as dry-coated dosages, afforded a good gastro-protection and allowed a drug chronodelivery at various intervals up to 4–5 h. They could be considered as an alternative for delayed delivery and a solvent-free coating procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adebisi AO, Conway BR. Modification of drug delivery to improve antibiotic targeting to the stomach. Ther Deliv. 2015;6(6):741–62.

    Article  CAS  PubMed  Google Scholar 

  2. Amidon S, Brown JE, Dave VS. Colon-targeted oral drug delivery systems: design trends and approaches. AAPS PharmSciTech. 2015;16(4):731–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wulff R, Leopold CS. Coatings from blends of Eudragit(R) RL and L55: a novel approach in pH-controlled drug release. Int J Pharm. 2014;476(1–2):78–87.

    Article  CAS  PubMed  Google Scholar 

  4. Govender M, Choonara YE, Kumar P, du Toit LC, van Vuuren S, Pillay V. A review of the advancements in probiotic delivery: conventional vs. non-conventional formulations for intestinal flora supplementation. AAPS PharmSciTech. 2014;15(1):29–43.

    Article  CAS  PubMed  Google Scholar 

  5. Mateescu M-A, Ispas-Szabo P, Assaad E. Starch and derivatives as pharmaceutical excipients. In: Elsevier, editor. Controlled drug delivery: the role of self-assembling multi-task excipients. 1st ed. London: Woodhead Publishing; 2014. p. 21–84.

    Google Scholar 

  6. Rashid I, Al Omari MMH, Badwan AA. From native to multifunctional starch-based excipients designed for direct compression formulation. Starch - Stärke. 2013;65(7–8):552–71.

    Article  CAS  Google Scholar 

  7. Ispas-Szabo P, Ravenelle F, Hassan I, Preda M, Mateescu MA. Structure–properties relationship in cross-linked high-amylose starch for use in controlled drug release. Carbohydr Res. 1999;323(1–4):163–75.

    Article  Google Scholar 

  8. Mulhbacher J, Ispas-Szabo P, Lenaerts V, Mateescu MA. Cross-linked high amylose starch derivatives as matrices for controlled release of high drug loadings. J Control Release. 2001;76(1–2):51–8.

    Article  CAS  PubMed  Google Scholar 

  9. Wang HW, Kyriacos S, Cartilier L. Water uptake by substituted amylose tablets: experimentation and numerical simulation. Drug Dev Ind Pharm. 2010;36(4):371–8.

    Article  PubMed  Google Scholar 

  10. Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Technol Today. 2000;3(6):198–204.

    Article  CAS  PubMed  Google Scholar 

  11. Dumoulin Y, Alex S, Szabo P, Cartilier L, Mateescu MA. Cross-linked amylose as matrix for drug controlled release. X-ray and FT-IR structural analysis. Carbohydr Polym. 1998;37(4):361–70.

    Article  CAS  Google Scholar 

  12. Rao YM, Veni JK, Jayasagar G. Formulation and evaluation of diclofenac sodium using hydrophilic matrices. Drug Dev Ind Pharm. 2001;27(8):759–66.

    Article  CAS  PubMed  Google Scholar 

  13. Gulrez SKH, Al-Assaf S. Hydrogels: methods of preparation, characterisation and applications. In: Angelo Carpi, editor. Progress in molecular and environmental bioengineering - from analysis and modeling to technology. Applications. InTech; 2011. p. 117–50. eBook.

  14. Mateescu MA, Ispas-Szabo P, Assaad E. The concept of self-assembling and the interactions involved. Controlled drug delivery: the role of self-assembling multi-task excipients. London: Woodhead Publishing; 2014. p. 1–20.

    Google Scholar 

  15. Lemieux M, Gosselin P, Mateescu MA. Influence of drying procedure and of low degree of substitution on the structural and drug release properties of carboxymethyl starch. AAPS PharmSciTech. 2010;11(2):775–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Calinescu C, Nadeau E, Mulhbacher J, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch for F4 fimbriae gastro-resistant oral formulation. Int J Pharm. 2007;343(1–2):18–25.

    Article  CAS  PubMed  Google Scholar 

  17. Calinescu C, Mulhbacher J, Nadeau E, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch (CM-HAS) as excipient for Escherichia coli oral formulations. Eur J Pharm Biopharm. 2005;60(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  18. Calinescu C, Mateescu MA. Carboxymethyl high amylose starch: chitosan self-stabilized matrix for probiotic colon delivery. Eur J Pharm Biopharm. 2008;70(2):582–9.

    Article  CAS  PubMed  Google Scholar 

  19. Calinescu C, Mondovi B, Federico R, Ispas-Szabo P, Mateescu MA. Carboxymethyl starch: chitosan monolithic matrices containing diamine oxidase and catalase for intestinal delivery. Int J Pharm. 2012;428(1–2):48–56.

    Article  CAS  PubMed  Google Scholar 

  20. Brouillet F, Bataille B, Cartilier L. High-amylose sodium carboxymethyl starch matrices for oral, sustained drug-release: formulation aspects and in vitro drug-release evaluation. Int J Pharm. 2008;356(1–2):52–60.

    Article  CAS  PubMed  Google Scholar 

  21. Nabais T, Brouillet F, Kyriacos S, Mroueh M, Amores da Silva P, Bataille B, et al. High-amylose carboxymethyl starch matrices for oral sustained drug-release: in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2007;65(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  22. Lemieux M, Gosselin P, Mateescu MA. Carboxymethyl high amylose starch as excipient for controlled drug release: mechanistic study and the influence of degree of substitution. Int J Pharm. 2009;382(1–2):172–82.

    Article  CAS  PubMed  Google Scholar 

  23. Assaad E, Mateescu MA. The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: structural insights and drug release kinetics. Int J Pharm. 2010;394(1–2):75–84.

    Article  CAS  PubMed  Google Scholar 

  24. Lin SY, Lin KH, Li MJ. Formulation design of double-layer in the outer shell of dry-coated tablet to modulate lag time and time-controlled dissolution function: studies on micronized ethylcellulose for dosage form design (VII). AAPS J. 2004;6(3):e17.

    Article  PubMed  Google Scholar 

  25. Oddsson E, Gudjonsson H, Thjodleifsson B. Endoscopic findings in the stomach and duodenum after treatment with enteric-coated and plain naproxen tablets in healthy subjects. Scand J Gastroenterol. 1990;25(3):5.

    Article  Google Scholar 

  26. Sadeghi F, Ford JL, Rajabi-Siahboomi A. The influence of drug type on the release profiles from Surelease-coated pellets. Int J Pharm. 2003;254(2):123–35.

    Article  CAS  PubMed  Google Scholar 

  27. Chan FKL, Lanas A, Scheiman J, Berger MF, Nguyen H, Goldstein JL. Celecoxib versus omeprazole and diclofenac in patients with osteoarthritis and rheumatoid arthritis (CONDOR): a randomised trial. Lancet. 2010;376(9736):173–9.

    Article  CAS  PubMed  Google Scholar 

  28. Massimo Claar G, Monaco S, Del Veccho Blanco C, Capurso L, Fusillo M, Annibale B. Omeprazole 20 or 40 mg daily for healing gastroduodenal ulcers in patients receiving non-steroidal anti-inflammatory drugs. Aliment Pharmacol Ther. 1998;12(5):463–8.

    Article  CAS  PubMed  Google Scholar 

  29. Sugano K, Kinoshita Y, Miwa H, Takeuchi T, Esomeprazole NPSG. Safety and efficacy of long-term esomeprazole 20 mg in Japanese patients with a history of peptic ulcer receiving daily non-steroidal anti-inflammatory drugs. BMC Gastroenterol. 2013;13:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rostom A, Wells G, Tugwell P, Welch V, Dube C, McGowan J. The prevention of chronic NSAID induced upper gastrointestinal toxicity: a Cochrane collaboration metaanalysis of randomized controlled trials. J Rheumatol. 2000;27(9):2203–14.

    CAS  PubMed  Google Scholar 

  31. Goldstein JL, Larson LR, Yamashita BD. Prevention of nonsteroidal anti-inflammatory drug-induced gastropathy: clinical and economic implications of a single-tablet formulation of diclofenac/misoprostol. Am J Manag Care. 1998;4(5):687–97.

    CAS  PubMed  Google Scholar 

  32. Altman R, Bosch B, Brune K, Patrignani P, Young C. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75(8):859–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. US Pharmacopeia 38 - National Formulary 33. United States Pharmacopeial Convention Inc. Rockville, MD. USA. 2015.

  34. Schell HD, Serban M, Mateescu MA, Bentia T. Acid and basic amylose ionic exchangers. Rev Roum Chim. 1978;23:1143–7.

    CAS  Google Scholar 

  35. Mulhbacher J, Mateescu MA, Calinescu C. Composition comprising polymeric material and uses thereof. 2008. Patent US20080286253.

  36. Freichel OL, Lippold BC. A new oral erosion controlled drug delivery system with a late burst in the release profile. Eur J Pharm Biopharm. 2000;50(3):345–51.

    Article  CAS  PubMed  Google Scholar 

  37. Kavanagh N, Corrigan OI. Swelling and erosion properties of hydroxypropylmethylcellulose (Hypromellose) matrices—influence of agitation rate and dissolution medium composition. Int J Pharm. 2004;279(1–2):141–52.

    Article  CAS  PubMed  Google Scholar 

  38. Sungthongjeen S, Puttipipatkhachorn S, Paeratakul O, Dashevsky A, Bodmeier R. Development of pulsatile release tablets with swelling and rupturable layers. J Control Release. 2004;95(2):147–59.

    Article  CAS  PubMed  Google Scholar 

  39. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds. 8th Edition. New York: Wiley; 2014. p. 81–108.

  40. Garekani HA, Sadeghi F, Ghazi A. Increasing the aqueous solubility of acetaminophen in the presence of polyvinylpyrrolidone and investigation of the mechanisms involved. Drug Dev Ind Pharm. 2003;29(2):173–9.

    Article  CAS  PubMed  Google Scholar 

  41. Voelker M, Hammer M. Dissolution and pharmacokinetics of a novel micronized aspirin formulation. Inflammopharmacology. 2012;20(4):225–31.

    Article  CAS  PubMed  Google Scholar 

  42. Bartolomei M, Bertocchi P, Antoniella E, Rodomonte A. Physico-chemical characterisation and intrinsic dissolution studies of a new hydrate form of diclofenac sodium: comparison with anhydrous form. J Pharm Biomed Anal. 2006;40(5):1105–13.

    Article  CAS  PubMed  Google Scholar 

  43. Palomo ME, Ballesteros MP, Frutos P. Analysis of diclofenac sodium and derivatives. J Pharm Biomed Anal. 1999;21(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  44. Mulhbacher J, Ispas-Szabo P, Mateescu MA. Cross-linked high amylose starch derivatives for drug release. II. Swelling properties and mechanistic study. Int J Pharm. 2004;278(2):231–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lazik W, Heinze T, Pfeiffer K, Albrecht G, Mischnick P. Starch derivatives of a high degree of functionalization. VI. Multistep carboxymethylation. J Appl Polym Sci. 2002;86(3):743–52.

    Article  CAS  Google Scholar 

  46. Heinze TH, Pfeiffer K, Lazik W. Starch derivatives with high degree of functionalization. III. Influence of reaction conditions and starting materials on molecular structure of carboxymethyl starch. J Appl Polym Sci. 2001;81(8):2036–44.

    Article  CAS  Google Scholar 

  47. Heinze TTP, HEINZE U. Starch derivatives of high degree of functionalization. 1. Effective, homogeneous synthesis of p-toluenesulfonyl (tosyl) starch with a new functionalization pattern. Carbohydr Polym. 2000;42:411–20.

    Article  CAS  Google Scholar 

  48. Massicotte LP, Baille WE, Mateescu MA. Carboxylated high amylose starch as pharmaceutical excipients. Structural insights and formulation of pancreatic enzymes. Int J Pharm. 2008;356(1–2):212–23.

    Article  CAS  PubMed  Google Scholar 

  49. Al-Taani BM, Tashtoush BM. Effect of microenvironment pH of swellable and erodable buffered matrices on the release characteristics of diclofenac sodium. AAPS PharmSciTech. 2003;4(3):E43.

    Article  PubMed  Google Scholar 

  50. Liu J, Stephens JD, Kowalczyk BR, Cetinkaya C. Real-time in-die compaction monitoring of dry-coated tablets. Int J Pharm. 2011;414(1–2):171–8.

    Article  CAS  PubMed  Google Scholar 

  51. Piana F, Case DH, Ramalhete SM, Pileio G, Facciotti M, Day GM, et al. Substituent interference on supramolecular assembly in urea gelators: synthesis, structure prediction and NMR. Soft Matter. 2016;12(17):4034–43.

    Article  CAS  PubMed  Google Scholar 

  52. Xiang Y, Moulin E, Buhler E, Maaloum M, Fuks G, Giuseppone N. Hydrogen-bonded multifunctional supramolecular copolymers in water. Langmuir. 2015;31(28):7738–48.

    Article  CAS  PubMed  Google Scholar 

  53. Lenaerts V, Moussa I, Dumoulin Y, Mebsout F, Chouinard F, Szabo P, et al. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release. 1998;53(1–3):225–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks are due to NSERC of Canada for the financial support of this research (MAM) and for a Canada fellowship for doctoral studies (CC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Alexandru Mateescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ispas-Szabo, P., De Koninck, P., Calinescu, C. et al. Carboxymethyl Starch Excipients for Drug Chronodelivery. AAPS PharmSciTech 18, 1673–1682 (2017). https://doi.org/10.1208/s12249-016-0634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0634-8

KEY WORDS

Navigation