Skip to main content

Advertisement

Log in

Negative Thermo-responsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

This paper deals with the synthesis of thermo-responsive microspheres with proteic structure exhibiting a transition temperature close to the body temperature. Temperature-sensitive hydrogels have attracted extensive interest due to their potential and promising applications in drug delivery field since they can undergo a rapid and reversible phase transition from a swollen to a shrunken state depending on environmental temperature. The hydrogels were synthesized by free-radical polymerization of hydrolyzed methacrylated gelatin (HGel-MA) and N,N′-methylenebisacrylamide as pro-hydrophilic multifunctional macromer and crosslinker, respectively, and N-isopropylacrylamide as thermo-responsive monomer. Thermal analyses showed negative thermo-responsive behavior for all compositions and, by increasing the content of the hydrophilic moieties in the network, the transition temperature raised to 36.9°C, close to the physiological values. In order to test the materials as drug carriers, diclofenac sodium salt was chosen as model drug. Drug release profiles, in phosphate buffer solution (pH 7.0, 10−3 M) at 25 and 40°C, depend on the hydrogel’s crosslinking degree and hydrophilic/hydrophobic balance in the polymeric network. For all formulations, in the shrunken state, the drug release percent values ranged from 80% to 100% after 24 h, and after 3 h, more than 60% of therapeutics was delivered. On the contrary, the swelling of the loaded microparticles produces, even after 30 h, a drug release percent of about 75%. By using semi-empirical equations, the release mechanism was extensively studied and the diffusional contribute was evaluated. The physico-chemical characteristics of thermo-responsive materials confirm the applicability of the microspheres as drug delivery device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson DG, Burdick JA, Langer R. Smart biomaterials. Science. 2004;305:1923–4.

    Article  CAS  PubMed  Google Scholar 

  3. Lang Y, Jiang T, Li S, Zheng L. Study on physicochemical properties of thermosensitive hydrogels constructed using graft-copolymers of poly(N-isopropylacrylamide) and guar gum. J Appl Polym Sci. 2008;108:3473–9.

    Article  CAS  Google Scholar 

  4. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  CAS  PubMed  Google Scholar 

  5. Bawa P, Pillay V, Choonara YE, Du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009. doi:10.1088/1748-6041/4/2/022001.

    PubMed  Google Scholar 

  6. De Las Heras Alarcón C, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev. 2005;34:276–85.

    Article  PubMed  Google Scholar 

  7. Peppas NA, Leobandung W. Stimuli-sensitive hydrogels: ideal carriers for chronobiology and chronotherapy. J Biomater Sci Polym Ed. 2004;15:125–44.

    Article  CAS  PubMed  Google Scholar 

  8. Iemma F, Spizzirri UG, Puoci F, Muzzalupo R, Trombino S, Cassano R et al. pH-Sensitive hydrogels based on bovine serum albumin for oral drug delivery. Int J Pharm. 2006;312:151–7.

    Article  CAS  PubMed  Google Scholar 

  9. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev. 2001;53:321–39.

    Article  CAS  Google Scholar 

  10. Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Progr Polym Sci. 2007;32:1275–343.

    Article  CAS  Google Scholar 

  11. Bikram M, West JL. Thermo-responsive systems for controlled drug delivery. Exp Opin Drug Deliv. 2008;5:1077–91.

    Article  CAS  Google Scholar 

  12. Iemma F, Spizzirri UG, Puoci F, Cirillo G, Curcio M, Parisi OI et al. Synthesis and release profile analysis of thermo-sensitive albumin hydrogels. Colloid Polym Sci. 2009;287:779–87.

    Article  CAS  Google Scholar 

  13. Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm. 2008;68:34–45.

    Article  CAS  PubMed  Google Scholar 

  14. Pan C, Long Q, Yu D, Rao Y, Wu N, Li X. Swelling and drug releasing properties of poly(N-isopropylacrylamide) thermo-sensitive copolymer gels. Front Chem China. 2008;3:314–9.

    Article  Google Scholar 

  15. Chang Y, Xiao L, Tang Q. Preparation and characterization of a novel thermosensitive hydrogel based on chitosan and gelatin blends. J Appl Polym Sci. 2009;113:400–7.

    Article  CAS  Google Scholar 

  16. Joly-Duhamel C, Hellio D, Djabourov M. All gelatin networks: 1. Biodiversity and physical chemistry. Langmuir. 2002;18:7208–17.

    Article  CAS  Google Scholar 

  17. Yang H, Kao WJ. Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)-poly(D, L-lactide) hydrogels: formulation, characterization, and antibacterial drug delivery. Pharm Res. 2006;23:205–14.

    Article  CAS  PubMed  Google Scholar 

  18. Chun S, Kim J. A novel hydrogel-dispersed composite membrane of poly(N-isopropylacrylamide) in a gelatin matrix and its thermally actuated permeation of 4-acetamidophen. J Control Release. 1996;38:39–47.

    Article  CAS  Google Scholar 

  19. Lee W, Lee S. Effect of gelatin on the drug release behaviors for the organic hybrid gels based on N-isopropylacrylamide and gelatine. J Mater Sci Mater Med. 2007;18:1089–96.

    Article  CAS  PubMed  Google Scholar 

  20. Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5:23–36.

    Article  CAS  Google Scholar 

  21. Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

  22. Lin LH, Chen KM. Preparation and surface modification of gelatine derivative surfactants. Colloid Surf A. 2006;272:8–14.

    Article  CAS  Google Scholar 

  23. Iemma F, Spizzirri UG, Muzzalupo R, Puoci F, Trombino S, Picci N. Spherical hydrophilic microparticles by radical copolymerization of functionalized bovine serum albumin. Coll Polym Sci. 2004;283:250–6.

    Article  CAS  Google Scholar 

  24. Malliou ET, Markopoulou CK, Koundourellis JE. Simultaneous determination of clobutinol together with some anti-inflammatory drugs in urine by HPLC. J Liq Chromatogr Relat Technol. 2004;27:1565–77.

    CAS  Google Scholar 

  25. Cirillo G, Iemma F, Puoci F, Parisi OI, Curcio M, Spizzirri UG et al. Imprinted hydrophilic nanospheres as drug delivery system for 5-fluorouracil sustained release. J Drug Target. 2009;17:72–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kriwet B, Walter E, Kissel T. Synthesis of bioadhesive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates. J Control Release. 1998;56:149–58.

    Article  CAS  PubMed  Google Scholar 

  27. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58:1655–70.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao C, Zhuang X, He P, Xiao C, He C, Sun J et al. Synthesis of biodegradable thermo- and pH-responsive hydrogels for controlled drug release. Polymer. 2009;50:4308–16.

    Article  CAS  Google Scholar 

  29. Spizzirri UG, Iemma F, Puoci F, Xue F, Gao W, Cirillo G et al. Synthesis of hydrophilic microspheres with LCST close to body temperature for controlled dual-sensitive drug release. Polym Adv Technol. 2010. doi:10.1002/pat.1660.

    Google Scholar 

  30. Mathews AS, Cho W-J, Kim I, Ha C-S. Thermally responsive poly[N-isopropylacrylamide-co-2-hydroxyethylacrylate] colloidal crystals included in β-cyclodextrin for controlled drug delivery. J Appl Polym Sci. 2009;113:1680–9.

    Article  CAS  Google Scholar 

  31. Shi J, Liu L, Liu X, Sun X, Cao S. Inorganic–organic hybrid alginate beads with LCST near human body temperature for sustained dual-sensitive drug delivery. Polym Adv Technol. 2008;19:1467–73.

    CAS  Google Scholar 

  32. Zhang X-Z, Chu C-C. Temperature-sensitive poly(N-isopropylacrylamide)/poly(ethylene glycol) diacrylate hydrogel microspheres: formulation and controlled drug release. Am J Drug Deliv. 2005;3:55–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by MIUR (Programma di ricerca di rilevante interesse nazionale 2008) and University of Calabria funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Gianfranco Spizzirri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curcio, M., Puoci, F., Spizzirri, U.G. et al. Negative Thermo-responsive Microspheres Based on Hydrolyzed Gelatin as Drug Delivery Device. AAPS PharmSciTech 11, 652–662 (2010). https://doi.org/10.1208/s12249-010-9429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9429-5

Key words

Navigation