Skip to main content

Advertisement

Log in

Isoxyl Aerosols for Tuberculosis Treatment: Preparation and Characterization of Particles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Isoxyl is a potent antituberculosis drug effective in treating various multidrug-resistant strains in the absence of known side effects. Isoxyl has been used exclusively, but infrequently, via the oral route and has exhibited very poor and highly variable bioavailability due to its sparing solubility in water. These properties resulted in failure of some clinical trials and, consequently, isoxyl’s use has been limited. Delivery of isoxyl to the lungs, a major site of Mycobacterium tuberculosis infection, is an attractive alternative route of administration that may rescue this abandoned drug for a disease that urgently requires new therapies. Particles for pulmonary delivery were prepared by antisolvent precipitation. Nanofibers with a width of 200 nm were obtained by injecting isoxyl solution in ethanol to water at a volume ratio of solvent to antisolvent of 1:5. Based on this preliminary result, a well-controlled method, involving nozzle mixing, was employed to prepare isoxyl particles. All the particles were 200 to 400 nm in width but had different lengths depending on properties of the solvents. However, generating these nanoparticles by simultaneous spray drying produced isoxyl microparticles (Feret’s diameter, 1.19–1.77 μm) with no discernible nanoparticle substructure. The bulking agent, mannitol, helped to prevent these nanoparticles from agglomeration during process and resulted in nanoparticle aggregates in micron-sized superstructures. Future studies will focus on understanding difference of these isoxyl microparticles and nanoparticles/nanoparticle aggregates in terms of in vivo disposition and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO. World Health Organization report: global tuberculosis control—epidemiology, strategy, financing. Geneva: WHO; 2009.

  2. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C. Tuberculosis. Lancet. 2003;362(9387):887–99.

    Article  PubMed  Google Scholar 

  3. Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med. 2005;172(12):1487–90.

    Article  PubMed  Google Scholar 

  4. Bastian I, Colebunders R. Treatment and prevention of multidrug-resistant tuberculosis. Drugs. 1999;58(4):633–61.

    Article  CAS  PubMed  Google Scholar 

  5. Skeiky YA, Sadoff JC. Advances in tuberculosis vaccine strategies. Nat Rev Microbiol. 2006;4(6):469–76.

    Article  CAS  PubMed  Google Scholar 

  6. Kimerling ME, Phillips P, Patterson P, Hall M, Robinson CA, Dunlap NE. Low serum antimycobacterial drug levels in non-HIV-infected tuberculosis patients. Chest. 1998;113(5):1178–83.

    Article  CAS  PubMed  Google Scholar 

  7. Conte Jr JE, Golden JA, McQuitty M, Kipps J, Duncan S, McKenna E et al. Effects of gender, AIDS, and acetylator status on intrapulmonary concentrations of isoniazid. Antimicrob Agents Chemother. 2002;46(8):2358–64.

    Article  CAS  PubMed  Google Scholar 

  8. Tappero JW, Bradford WZ, Agerton TB, Hopewell P, Reingold AL, Lockman S et al. Serum concentrations of antimycobacterial drugs in patients with pulmonary tuberculosis in Botswana. Clin Infect Dis. 2005;41(4):461–9.

    Article  CAS  PubMed  Google Scholar 

  9. Muttil P, Wang C, Hickey AJ. Inhaled drug delivery for tuberculosis therapy. Pharm Res. 2009;26:2401–16.

    Article  CAS  PubMed  Google Scholar 

  10. Hwang SM, Kim DD, Chung SJ, Shim CK. Delivery of ofloxacin to the lung and alveolar macrophages via hyaluronan microspheres for the treatment of tuberculosis. J Control Release. 2008;129(2):100–6.

    Article  CAS  PubMed  Google Scholar 

  11. Davies NM, Feddah MR. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm. 2003;255(1–2):175–87.

    Article  CAS  PubMed  Google Scholar 

  12. Patton JS, Fishburn CS, Weers JG. The lungs as a portal of entry for systemic drug delivery. Proc Am Thorac Soc. 2004;1(4):338–44.

    Article  CAS  PubMed  Google Scholar 

  13. Makino K, Nakajima T, Shikamura M, Ito F, Ando S, Kochi C et al. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surf B Biointerfaces. 2004;36(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  14. Phetsuksiri B, Baulard AR, Cooper AM, Minnikin DE, Douglas JD, Besra GS et al. Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob Agents Chemother. 1999;43(5):1042–51.

    CAS  PubMed  Google Scholar 

  15. Isoxyl. Tubercle. 1965;46(3):298–300.

  16. Tousek J. On the clinical effectiveness of isoxyl. Antibiot Chemother. 1970;16:149–55.

    CAS  PubMed  Google Scholar 

  17. Bartmann K, editor. Antituberculosis drugs. Berlin: Springer-Verlag; 1988. p. 185–9.

    Google Scholar 

  18. Mitchell RS, Petty TL, Dye WE. Clinical and pharmacological studies of isoxyl. In Transactions of the 23rd Research Conference in Pulmonary Disease; 1964.

  19. Wang Z, Chen JF, Le Y, Shen ZG, Yun J. Preparation of ultrafine beclomethasone dipropionate drug powder by antisolvent precipitation. Ind Eng Chem Res. 2007;46(14):4839–45.

    Article  CAS  Google Scholar 

  20. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  21. Tam JM, McConville JT, Williams 3rd RO, Johnston KP. Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J Pharm Sci. 2008;97:4915–33.

    Article  CAS  PubMed  Google Scholar 

  22. Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: role of physicochemical properties of particulate carriers–liposomes and microspheres–on the phagocytosis by macrophages. J Control Release. 2002;79(1–3):29–40.

    Article  CAS  PubMed  Google Scholar 

  23. Sharma R, Saxena D, Dwivedi AK, Misra A. Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res. 2001;18(10):1405–10.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma R, Muttil P, Yadav AB, Rath SK, Bajpai VK, Mani U et al. Uptake of inhalable microparticles affects defence responses of macrophages infected with Mycobacterium tuberculosis H37Ra. J Antimicrob Chemother. 2007;59(3):499–506.

    Article  CAS  PubMed  Google Scholar 

  25. Tam JM, McConville JT, Williams 3rd RO, Johnston KP. Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J Pharm Sci. 2008;97(11):4915–33.

    Article  CAS  PubMed  Google Scholar 

  26. Matteucci ME, Hotze MA, Johnston KP, Williams 3rd RO. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization. Langmuir. 2006;22(21):8951–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mullin JW. Crystallization. 4th ed. Oxford: Butterworth-Heinemann; 2001.

    Google Scholar 

  28. Adamson AW. Physical chemistry of surfaces. 5th ed. New York: Wiley; 1990.

    Google Scholar 

  29. Park SJ, Yeo SD. Antisolvent crystallization of sulfa drugs and the effect of process parameters. Sep Sci Technol. 2007;42:2645–60.

    CAS  Google Scholar 

  30. Cal K, Sollohub K. Spray drying technique. I: Hardware and process parameters. J Pharm Sci. 2010;99:575–86.

    CAS  PubMed  Google Scholar 

  31. Larhrib H, Martin GP, Marriott C, Prime D. The influence of carrier and drug morphology on drug delivery from dry powder formulations. Int J Pharm. 2003;257(1–2):283–96.

    Article  CAS  PubMed  Google Scholar 

  32. Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E et al. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981;67(5):965–75.

    CAS  PubMed  Google Scholar 

  33. Barrett JC, Lamb PW, Wiseman RW. Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibers. Environ Health Perspect. 1989;81:81–9.

    Article  CAS  PubMed  Google Scholar 

  34. Blake T, Castranova V, Schwegler-Berry D, Baron P, Deye GJ, Li C et al. Effect of fiber length on glass microfiber cytotoxicity. J Toxicol Environ Health A. 1998;54(4):243–59.

    Article  CAS  PubMed  Google Scholar 

  35. Zeidler-Erdely PC, Calhoun WJ, Ameredes BT, Clark MP, Deye GJ, Baron P et al. In vitro cytotoxicity of Manville Code 100 glass fibers: effect of fiber length on human alveolar macrophages. Part Fibre Toxicol. 2006;3:5.

    Article  PubMed  Google Scholar 

  36. Zhao H, Le Y, Liu H, Hu T, Shen Z, Yun J et al. Preparation of microsized spherical aggregates of ultrafine ciprofloxacin particles for dry powder inhalation (DPI). Powder Technol. 2009;194:81–6.

    Article  CAS  Google Scholar 

  37. Haleblian JK. Characterization of habits and crystalline modification of solids and their pharmaceutical applications. J Pharm Sci. 1975;64(8):1269–88.

    Article  CAS  PubMed  Google Scholar 

  38. Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res. 2008;25(5):999–1022.

    Article  CAS  PubMed  Google Scholar 

  39. Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res. 2007;24(3):411–37.

    Article  CAS  PubMed  Google Scholar 

  40. Muller RH, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev. 2001;47(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  41. Hickey AJ. Inhalation aerosols: physical and biological basis for therapy. 2nd ed. New York: Informa Healthcare; 2006.

    Google Scholar 

  42. Caira M, Crider M, de Villers M, Liebenberg W. New synthesis and physicochemical properties of two crystal forms of the antitubercular agent isoxyl. In: AAPS Annual Meeting and Exposition; 2005.

  43. Bhowruth V, Brown AK, Reynolds RC, Coxon GD, Mackay SP, Minnikin DE et al. Symmetrical and unsymmetrical analogues of isoxyl; active agents against Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2006;16(18):4743–7.

    Article  CAS  PubMed  Google Scholar 

  44. Hinds WC. Aerosol technology: properties, behavior, and measurement of airborne particles. 2nd ed. New York: Wiley; 1998.

    Google Scholar 

  45. Dunbar CA, Hickey AJ, Holzner P. Dispersion and characterization of pharmaceutical dry powder aerosols. KONA. 1998;16:7–44.

    CAS  Google Scholar 

  46. Hickey AJ. Pharmaceutical inhalation aerosol technology, vol. 2. New York: Marcel Dekker Inc; 2003 (revised and expanded).

    Google Scholar 

  47. Zeng XM, Martin AP, Marriott C, Pritchard J. The influence of carrier morphology on drug delivery by dry powder inhalers. Int J Pharm. 2000;200(1):93–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Scanning electron microscopy was conducted at the Analytical and Nanofabrication Laboratory (CHANL) and the School of Dentistry, University of North Carolina at Chapel Hill. We gratefully acknowledge the assistance of Carrie Donley and Wallace Ambrose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Hickey, A.J. Isoxyl Aerosols for Tuberculosis Treatment: Preparation and Characterization of Particles. AAPS PharmSciTech 11, 538–549 (2010). https://doi.org/10.1208/s12249-010-9415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9415-y

Key words

Navigation