Skip to main content
Log in

Preparation and Physicochemical Characterization of Amoxicillin β-cyclodextrin Complexes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Amoxicillin (AMOX), a penicillin A, belongs to the β-lactam family It is usually the drug of choice within the class because it is better absorbed, following oral administration, than other β-lactam antibiotics. Its β-lactamase degradation might be prevented by using a molecular [AMOX:β-CD] complex. The aim of this work was to prepare complexes using two methods and then characterize interactions between AMOX and the native β-CD. The extent of complexation in solution has been evaluated by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and 2D rotating-frame Overhauser enhancement spectroscopy (2D ROESY). Mass changes (TG), calorimetric effects (DSC), and mass spectrometry (MS) were determined on the same sample under identical conditions using the Skimmer coupling system. Skimmer and infrared spectroscopy (FT-IR) were used to characterize the solid state of the binary system. Complexation of AMOX with β-CD was proven by FT-IR, NMR, DSC, and HPLC. The 2D ROESY spectra did not show any dipolar proton interaction of the AMOX with cyclodextrin. The 1:1 stoichiometry of the complex was obtained by HPLC. The stability constant for AMOX with β-CD was determined to be 1,878 M−1. In the [AMOX:β-CD] complex, the phenyl group is included inside the β-CD, and the ionized carboxyl group on the penam ring forms hydrogen bonds with the secondary hydroxyl groups of another β-CD to keep the complex stable. Preparation methods allowed exactly the same complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wilson W, Taubert KA, Gewitz M, Lockhart PB, Baddour LM, Levison M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association: a guideline from the American Heart Association Rheumatic Fever, Endocarditis and Kawasaki Disease Committee, Council on Cardiovascular Disease in the Young, and the Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and the Quality of Care and Outcomes Research Interdisciplinary Working Group. J Am Dent Assoc. 2007;138(739–45):747–60.

    Google Scholar 

  2. Bresco-Salinas M, Costa-Riu N, Berini-Aytes L, Gay-Escoda C. Antibiotic susceptibility of the bacteria causing odontogenic infections. Med Oral Patol Oral Cir Bucal. 2006;11:E70–5.

    PubMed  Google Scholar 

  3. Hansmann Y. Treatment and prevention of Lyme disease. Curr Probl Dermatol. 2009;37:111–29.

    Article  PubMed  Google Scholar 

  4. Kuriyama T, Williams DW, Yanagisawa M, Iwahara K, Shimizu C, Nakagawa K, et al. Antimicrobial susceptibility of 800 anaerobic isolates from patients with dentoalveolar infection to 13 oral antibiotics. Oral Microbiol Immunol. 2007;22:285–8.

    Article  CAS  PubMed  Google Scholar 

  5. Drissi M, Ahmed ZB, Dehecq B, Bakour R, Plesiat PHocquet D. Antibiotic susceptibility and mechanisms of beta-lactam resistance among clinical strains of Pseudomonas aeruginosa: first report in Algeria. Med Mal Infect. 2008;38:187–91.

    Article  CAS  PubMed  Google Scholar 

  6. Handal T, Olsen I, Walker CB, Caugant DA. Detection and characterization of beta-lactamase genes in subgingival bacteria from patients with refractory periodontitis. FEMS Microbiol Lett. 2005;242:319–24.

    Article  CAS  PubMed  Google Scholar 

  7. Mandsberg LF, Ciofu O, Kirkby N, Christiansen LE, Poulsen HE, Hoiby N. Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system. Antimicrob Agents Chemother. 2009;53:2483–91.

    Article  CAS  PubMed  Google Scholar 

  8. Shrestha B. Study of beta lactamase activity of Staphylococcus aureus isolated from healthy nasal carriers and hospital isolates. Nepal Med Coll J. 2007;9:107–10.

    PubMed  Google Scholar 

  9. Voha C, Docquier JD, Rossolini GM, Fosse T. Genetic and biochemical characterization of FUS-1 (OXA-85), a narrow-spectrum class D beta-lactamase from Fusobacterium nucleatum subsp. polymorphum. Antimicrob Agents Chemother. 2006;50:2673–9.

    Article  CAS  PubMed  Google Scholar 

  10. Kaner D, Christan C, Dietrich T, Bernimoulin JP, Kleber BM, Friedmann A. Timing affects the clinical outcome of adjunctive systemic antibiotic therapy for generalized aggressive periodontitis. J Periodontol. 2007;78:1201–8.

    Article  PubMed  Google Scholar 

  11. Moeintaghavi A, Talebi-ardakani MR, Haerian-ardakani A, Zandi H, Taghipour S, Fallahzadeh H, et al. Adjunctive effects of systemic amoxicillin and metronidazole with scaling and root planing: a randomized, placebo controlled clinical trial. J Contemp Dent Pract. 2007;8:51–9.

    PubMed  Google Scholar 

  12. Villoria A, Garcia P, Calvet X, Gisbert JP, Vergara M. Meta-analysis: high-dose proton pump inhibitors vs. standard dose in triple therapy for Helicobacter pylori eradication. Aliment Pharmacol Ther. 2008;28:868–77.

    CAS  PubMed  Google Scholar 

  13. Szejtli J. Cyclodextrin Technology. Dordrecht: Kluwer; 1988.

    Google Scholar 

  14. Aleem O, Kuchekar B, Pore Y, Late S. Effect of beta-cyclodextrin and hydroxypropyl beta-cyclodextrin complexation on physicochemical properties and antimicrobial activity of cefdinir. J Pharm Biomed Anal. 2008;47:535–40.

    Article  CAS  PubMed  Google Scholar 

  15. Beni S, Szakacs Z, Csernak O, Barcza L, Noszal B. Cyclodextrin/imatinib complexation: binding mode and charge dependent stabilities. Eur J Pharm Sci. 2007;30:167–74.

    Article  CAS  PubMed  Google Scholar 

  16. Figueiras A, Sarraguca JM, Carvalho RA, Pais AA, Veiga FJ. Interaction of omeprazole with a methylated derivative of beta-cyclodextrin: phase solubility, NMR spectroscopy and molecular simulation. Pharm Res. 2007;24:377–89.

    Article  CAS  PubMed  Google Scholar 

  17. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev. 1998;98:2045–76.

    Article  CAS  PubMed  Google Scholar 

  18. Pajatsch M, Andersen C, Mathes A, Bock A, Benz R, Engelhardt H. Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca. J Biol Chem. 1999;274:25159–66.

    Article  CAS  PubMed  Google Scholar 

  19. Pajatsch M, Gerhart M, Peist R, Horlacher R, Boos W, Bock A. The periplasmic cyclodextrin binding protein CymE from Klebsiella oxytoca and its role in maltodextrin and cyclodextrin transport. J Bacteriol. 1998;180:2630–5.

    CAS  PubMed  Google Scholar 

  20. Aki H, Niiya T, Iwase Y, Kawasaki Y, Kumai K, Kimura T. Multimodal inclusion complexes of ampicillin with β-cyclodextrins in aqueous solution. Thermochim Acta. 2004;416:87–92.

    Article  CAS  Google Scholar 

  21. Athanassiou G, Michaleas S, Lada-Chitiroglou E, Tsitsa T, Antoniadou-Vyza E. Antimicrobial activity of beta-lactam antibiotics against clinical pathogens after molecular inclusion in several cyclodextrins. A novel approach to bacterial resistance. J Pharm Pharmacol. 2003;55:291–300.

    Article  CAS  PubMed  Google Scholar 

  22. Maffeo D, Leondiadis L, Mavridis IM, Yannakopoulou K. Positive effect of natural and negatively charged cyclodextrins on the stabilization of penicillins towards beta-lactamase degradation due to inclusion and external guest–host association. An NMR and MS study. Org Biomol Chem. 2006;4:1297–304.

    Article  CAS  PubMed  Google Scholar 

  23. The Merck Index. In Windholz M., Budavari S., Blumetti R.F., Otterbein E.S., editors. Tenthed. Merck and Co., Inc. 1996.

  24. Higuchi T, Connors KA. Advances in analytical chemistry and instrumentation. New York: Wiley Interscience; 1965. p. 117–212.

    Google Scholar 

  25. Claridge TDW. High resolution NMR techniques in organic chemistry. Oxford: Pergamon; 1999. p. 320–36.

    Google Scholar 

  26. Uekama K, Hirayama F, Irie T. The new method for determination of the stability constants of cyclodextrin-prostaglandin inclusion complexes by liquid chromatography. Chemistry Letters. 1978; p. 661–664.

  27. Di Stefano R, Scopelliti M, Pellerito C, Fiore T, Vitturi R, Colomba MS, et al. Organometallic complexes with biological molecules. XVII. Triorganotin(IV) complexes with amoxicillin and ampicillin. J Inorg Biochem. 2002;89:279–92.

    Article  PubMed  Google Scholar 

  28. Fogazzi GB, Cantu M, Saglimbeni L, Daudon M. Amoxycillin, a rare but possible cause of crystalluria. Nephrol Dial Transplant. 2003;18:212–4.

    Article  CAS  PubMed  Google Scholar 

  29. Mc Millan I, Stoodley RJ. A novel rearrangement of methyl-6 chloropenicillanate. Tetrahydron Lett. 1966;11:1205–10.

    Article  Google Scholar 

  30. Marciniec B, Plotkowiak Z, Wachowski L, Kozak M, Popielarz-Brzezinska M. Analytical study of γ-irradiated antibiotics in the solid state. J Therm Anal Calorim. 2002;68:423–36.

    Article  CAS  Google Scholar 

  31. Szejtli J. Inclusion compounds: physical properties and applications. In: Atwood JL, Davies JE, MacNicol DD, editors. Inclusion compounds, vol. 3. London: Academic; 1984. p. 331–89.

    Google Scholar 

  32. Nepogodiev SA, Stoddart JF. Cyclodextrin-based catenanes and rotaxanes. Chem Rev. 1998;98:1959–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Professor Mutzenhardt (Laboratoire de Méthodologie en RMN, Faculté des Sciences et Techniques, Nancy) for his help in performing 2D ROESY analysis. We also thank Professor Marsura for his help and Mme Anne Marie Canziani for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine Kedzierewicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisson-Boutelliez, C., Fontanay, S., Finance, C. et al. Preparation and Physicochemical Characterization of Amoxicillin β-cyclodextrin Complexes. AAPS PharmSciTech 11, 574–581 (2010). https://doi.org/10.1208/s12249-010-9412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9412-1

Key words

Navigation