Skip to main content
Log in

Effect of Auxiliary Substances on Complexation Efficiency and Intrinsic Dissolution Rate of Gemfibrozil–β-CD Complexes

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The studies reported in this work are aimed to elucidate the ternary inclusion complex formation of gemfibrozil (GFZ), a poorly water-soluble drug, with β-cyclodextrin (β-CD) with the aid of auxiliary substances like different grades of povidone(s) (viz. PVP K-29/32, PVP K-40, Plasdone S-630, and Polyplasdone XL), organic base (viz. triethanolamine), and metal ion (viz. MgCl2·6H2O), by investigating their interactions in solution and solid state. Phase solubility studies were carried out to evaluate the solubilizing power of β-cyclodextrin, in association with various auxiliary substances, to determine the apparent stability constant (K C) and complexation efficiency (CE) of complexes. Improvement in K C values for ternary complexes clearly proves the benefit of the addition of auxiliary substances to promote CE. Of all the approaches used, the use of polymer Plasdone S-630 was found to be the most promising approach in terms of optimum CE and K C. GFZ–β-CD (1:1) binary and ternary systems were prepared by kneading and lyophilization methods. The ternary systems clearly signified superiority over binary systems in terms of CE, solubility, K C, and reduction in the formulation bulk. Optimized ternary system of GFZ–β-CD–Plasdone S-630 prepared by using lyophilization method indicated a significant improvement in intrinsic dissolution rate when compared with ternary kneaded system. Differential scanning calorimetry, X-ray diffraction, Fourier transform infrared, scanning electron microscopy, and proton nuclear magnetic resonance were carried out to characterize the binary and optimized ternary complex. The results suggested the formation of new solid phases, eliciting strong evidences of ternary inclusion complex formation between GFZ, β-CD, and Plasdone S-630, particularly for lyophilized products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manca ML, Zaru M, Ennas G, et al. Diclofenac–β-cyclodextrin binary systems: physicochemical characterization and in vitro dissolution and diffusion studies. AAPS PharmSci Tech. 2005;6:64–72.

    Google Scholar 

  2. Challa R, Ahuja A, Khar RK, Ali J. Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech. 2005;6:E326–38.

    Article  Google Scholar 

  3. Loftsson T, Masson M, Siigurjonsdottir JF. Methods to enhance the complexation efficiency of cyclodextrins. STP Pharma Sci. 1999;9:237–42.

    CAS  Google Scholar 

  4. Loftsson T, Brewster ME. Pharmaceutical applications of cyclodextrins. Drug solubilization and stabilization. J Pharm Sci. 1996;85:1017–25.

    Article  CAS  PubMed  Google Scholar 

  5. Ukama K, Otagiri M. Cyclodextrins in drug carrier systems. Chem Rev. 1987;98:2045–76.

    Article  Google Scholar 

  6. Ulu ST. LC determination of gemfibrozil in tablets. Chromatographia. 2006;64:447.

    Article  CAS  Google Scholar 

  7. Ain S, Philip B, Pathak K. Preformulative assessment of inclusion complexes of Gemfibrozil, with cyclodextrins. PDA. 2008;62:300–8.

    CAS  Google Scholar 

  8. Patel AR, Vavia PR. Effect of hydrophilic polymers on solubilization of fenofibrate by cyclodextrin complexation. J Inc Phenom Macrocycl Chem. 2006;56:247–51.

    Article  CAS  Google Scholar 

  9. Loftsson T, Fridriksdottir H. The effect of water soluble polymers on aqueous solubility of drugs. Int J Pharm Sci. 1996;127:293–6.

    Article  CAS  Google Scholar 

  10. Higuchi T, Connors A. Phase solubility techniques. Adv Anal Chem Instrum. 1965; 117–211

  11. Loftsson T, Hreinsdottir D, Masson M. The complexation efficiency. J Inc l Phenom Macrocycl Chem. 2007;57:545–52.

    Article  CAS  Google Scholar 

  12. Laura SSR, Dominos CF, Francisco JBV. Physicochemical investigation of the effects of water-soluble polymers on vinpocetine complexation with β-cyclodextrin and its sulfobutyl ether derivative in solution and solid state. Eur J Pharm Sci. 2003;20:253–66.

    Article  Google Scholar 

  13. Chowdary KPR, Srinivas SV. Effect of polyvinylpyrrolidone on complexation and dissolution rate of β and hydroxypropyl–β-cyclodextrin complexes of celecoxib. Ind J Pharm. 2006;68:631–4.

    Article  CAS  Google Scholar 

  14. Govindarajan R, Nagarsenkar S. Influence of preparation methodology on solid state properties of an acidic drug-cyclodextrin system. J Pharm Pharmacol. 2004;56:725–33.

    Article  CAS  PubMed  Google Scholar 

  15. Aulton M. Pharmaceutical preformulation: the physicochemical properties of drug substances. Pharmaceutics the design of dosage form design. 2nd ed. Philadelphia: Churchill Livingstone; 2002. p. 122–3.

    Google Scholar 

  16. Chowdary KPR, Srinivas SV. Influence of hydrophilic polymer on celecoxib complexation with hydroxypropyl–β-CD. AAPS Pharm Sci Tech. 2006;7:E1–5.

    Article  Google Scholar 

  17. Yamakawa T, Nishimura S. Liquid formulation of a novel non-fluorinated topical quinolone, T-3912, utilizing the synergistic solubilizing effect of the combined use of magnesium ions and hydroxypropyl–β-cyclodextrin. J Cont Release. 2003;86:101–13.

    Article  CAS  Google Scholar 

  18. Granero G, Garnero C, Marcela L. The effect of pH and triethanolamine on sulfisoxazole complexation with hydroxypropyl–β-cyclodextrin. Eur J Pharm Sci. 2003;20:285–93.

    Article  CAS  Google Scholar 

  19. Fridriksdottir H, Siiguroardottir AM, Ueda H. The effect of water soluble polymers on drug–cyclodextrin complexation. Int J Pharm. 1994;110:169–77.

    Article  Google Scholar 

  20. Mura P, Faucci MT, Bettinetti GP. The influence of polyvinyl pyrrolidone on naproxen complexation with hydroxypropyl β-cyclodextrin. Eur J Pharm Sci. 2001;13:187–94.

    Article  CAS  PubMed  Google Scholar 

  21. A PRODUCT GUIDE Performance Enhancing Products for Pharmaceuticals Available at www.ispcorp.com. Accessed March 8, 2008.

  22. Kollidon BW. Polyvinylpyrrolidone for the pharmaceutical industry 4th edn. BASF; 1998.

  23. Doijad RC, Kanakal MM, Manvi FV. Effect of processing variables on dissolution and solubility of piroxicam: hydroxypropyl–β-cyclodextrin inclusion complexes. Indian J Pharm S. 2007;69:323–6.

    Article  CAS  Google Scholar 

  24. Dollo CLC, et al. Improvement in solubility and dissolution rate of 1, 2-dithiole-3-iones upon complexation with β-cyclodextrin and its hydroxypropyl and sulfobutylether derivatives. J Pharm Sci. 1999;88:889–95.

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed GEL. Effect of cyclodextrins on the physico-chemical properties and antimycotic activity of clotrimoxazole. Int J Pharm. 1998;171:111–21.

    Article  CAS  Google Scholar 

  26. Kurazumi M, Nambu N, Nagri T. Pharmaceutical interactions in dosage form and processing for Inclusion compounds of non-steroidal anti-inflammatory and other slightly water soluble drugs with β-cyclodextrins in powdered form. Chem Pharm Bull. 1975;23:3062–8.

    Google Scholar 

  27. Veiga F, Fernandes C, Maincent P. Influence of the preparation method on the physicochemical properties of tolbutamide/cyclodextrin binary system. Drug Dev Ind Pharm. 2001;27:523–32.

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes C, Viera MT, Viega F. Physicochemical characterization and in vitro dissolution behaviour of nicardipine-cyclodextrin inclusion compounds. Eur J Pharm Sci. 2002;15:79–88.

    Article  CAS  PubMed  Google Scholar 

  29. Ryan JA. Compressed pellet X-RD monitoring for optimization of crystallinity in lyophilized solids: imipenem: cilastatin sodium case. J Pharm Sci. 1986;75:805–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nalluri BN, Chowdhary KPR, Murthy KVR, et al. Physicochemical characterization and dissolution properties of nimesulide–cyclodextrin binary system. AAPS PharmSci Tech. 2003;4:1–12.

    Google Scholar 

  31. Rao VM, Haslam JL, Stella VJ. Controlled and complete release of model poorly water soluble drug, prednisolone, from hydroxypropylmethylcellulose matrix tablets using SBE–β-cyclodextrin as a solubilizing agent. J Pharm Sci. 2001;129:807–16.

    Article  Google Scholar 

  32. Baboota S, Dhaliwal M, Kohli K, et al. Inclusion complexation of Rofecoxib with dimethyl β-cyclodextrin. J Pharm Sci. 2005;85:226–9.

    Google Scholar 

  33. Erden N, Celebi N. A study of inclusion complex of naproxen with β-cyclodextrin. Int J Pharm. 1988;48:83–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank IIT Delhi for providing the facilities for SEM and XRD. We would also like to thank Mr.Yogesh Murti and Mr. Harjeet Singh for their spectral suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Philip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sami, F., Philip, B. & Pathak, K. Effect of Auxiliary Substances on Complexation Efficiency and Intrinsic Dissolution Rate of Gemfibrozil–β-CD Complexes. AAPS PharmSciTech 11, 27–35 (2010). https://doi.org/10.1208/s12249-009-9350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-009-9350-y

Key words

Navigation