Skip to main content

Advertisement

Log in

Enhanced Pharmacokinetic Bioanalysis of Antibody–drug Conjugates using Hybrid Immunoaffinity Capture and Microflow LC-MS/MS

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The increasing complexity and diversity of antibody–drug conjugates (ADCs) have led to a need for comprehensive and informative bioanalytical methods to enhance pharmacokinetic (PK) understanding. This study aimed to evaluate the feasibility of a hybrid immunoaffinity (IA) capture microflow LC–MS/MS (μLC-MS/MS) method for ADC analysis, utilizing a minimal sample volume for PK assessments in a preclinical study. A robust workflow was established for the quantitative analysis of ADCs by the implementation of solid-phase extraction (SPE) and semi-automation in µLC-MS/MS. Utilizing the µLC-MS/MS approach in conjunction with 1 µL of ADC-dosed mouse plasma sample volume, standard curves of two representative surrogate peptides for total antibody (heavy chain, HC) and intact antibody (light chain, LC) ranged from 1.00 ng/mL (LLOQ) to 5000 ng/mL with correlation coefficients (r2) values of > 0.99. The linear range of the standard curve for payload as a surrogate for the concentration of total ADC was from 0.5 ng/mL (LLOQ) to 2000 ng/mL with high accuracy and precision (< 10% CV at all concentrations). Moreover, a high correlation of concentrations of total antibody between two assay approaches (µLC-MS and ELISA) was achieved with less than 20% difference at all time points, indicating that the two methods are comparable in quantitation of total antibody in plasma samples. The µLC-MS platform demonstrated a greater dynamic range, sensitivity, robustness, and good reproducibility. These findings demonstrated that the cost-effective µLC-MS method can reduce reagent consumption and minimize the use of mice plasma samples while providing more comprehensive information about ADCs being analyzed, including the total antibody, intact antibody, and total ADC.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.

    Article  CAS  PubMed  Google Scholar 

  2. Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao N-S, et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25(18):5441–8.

    Article  CAS  PubMed  Google Scholar 

  3. Tong JTW, Harris PWR, Brimble MA, Kavianinia I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules. 2021;26(19):5847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther. 2022;7(1):93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamath AV, Iyer S. Preclinical pharmacokinetic considerations for the development of antibody drug conjugates. Pharm Res. 2015;32(11):3470–9.

    Article  CAS  PubMed  Google Scholar 

  6. Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, et al. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nowatzke WL, Rogers K, Wells E, Bowsher RR, Ray C, Unger S. Unique challenges of providing bioanalytical support for biological therapeutic pharmacokinetic programs. Bioanalysis. 2011;3(5):509–21.

    Article  CAS  PubMed  Google Scholar 

  8. Kaur S, Xu K, Saad OM, Dere RC, Carrasco-Triguero M. Bioanalytical assay strategies for the development of antibody-drug conjugate biotherapeutics. Bioanalysis. 2013;5(2):201–26.

    Article  CAS  PubMed  Google Scholar 

  9. Faria M, Peay M, Lam B, Ma E, Yuan M, Waldron M, et al. Multiplex LC-MS/MS assays for clinical bioanalysis of MEDI4276, an antibody-drug conjugate of tubulysin analogue attached via cleavable linker to a biparatopic humanized antibody against HER-2. Antibodies (Basel). 2019;8(1):11.

    Article  CAS  PubMed  Google Scholar 

  10. Huang Y, Del Nagro CJ, Balic K, Mylott WR, Ismaiel OA, Ma E, et al. Multifaceted bioanalytical methods for the comprehensive pharmacokinetic and catabolic assessment of MEDI3726, an anti-prostate-specific membrane antigen pyrrolobenzodiazepine antibody–drug conjugate. Anal Chem. 2020;92(16):11135–44.

    Article  CAS  PubMed  Google Scholar 

  11. Mora JR, Obenauer-Kutner L, Vimal PV. Application of the Gyrolab™ platform to ligand-binding assays: a user’s perspective. Bioanalysis. 2010;2(10):1711–5.

    Article  CAS  PubMed  Google Scholar 

  12. Cahuzac H, Devel L. Analytical methods for the detection and quantification of ADCs in biological matrices. Pharmaceuticals (Basel, Switzerland). 2020;13(12).

  13. Zhao Y, Liu G, Angeles A, Hamuro LL, Trouba KJ, Wang B, et al. Development and validation of a liquid chromatography tandem mass spectrometry assay for the quantitation of a protein therapeutic in cynomolgus monkey serum. J Chromatogr B. 2015;988:81–7.

    Article  CAS  Google Scholar 

  14. Birdsall RE, McCarthy SM, Janin-Bussat MC, Perez M, Haeuw JF, Chen W, et al. A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection. MAbs. 2016;8(2):306–17.

    Article  CAS  PubMed  Google Scholar 

  15. Merbel NCvd. Protein quantification by LC–MS: a decade of progress through the pages of Bioanalysis. Bioanalysis. 2019;11(7):629–44.

    Article  PubMed  Google Scholar 

  16. An B, Zhang M, Qu J. Toward sensitive and accurate analysis of antibody biotherapeutics by liquid chromatography coupled with mass spectrometry. Drug Metab Dispos. 2014;42(11):1858–66.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Heudi O, Barteau S, Zimmer D, Schmidt J, Bill K, Lehmann N, et al. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC−MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal Chem. 2008;80(11):4200–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Spellman DS, Song Y, Choi B, Hatcher NG, Tomazela D, et al. Generic automated method for liquid chromatography–multiple reaction monitoring mass spectrometry based monoclonal antibody quantitation for preclinical pharmacokinetic studies. Anal Chem. 2014;86(17):8776–84.

    Article  CAS  PubMed  Google Scholar 

  19. Bults P, Bischoff R, Bakker H, Gietema JA, van de Merbel NC. LC-MS/MS-based monitoring of in vivo protein biotransformation: quantitative determination of trastuzumab and its deamidation products in human plasma. Anal Chem. 2016;88(3):1871–7.

    Article  CAS  PubMed  Google Scholar 

  20. Ewles M, Mannu R, Fox C, Stanta J, Evans G, Goodwin L, et al. LC-MS/MS strategies for therapeutic antibodies and investigation into the quantitative impact of antidrug-antibodies. Bioanalysis. 2016;8(24):2565–79.

    Article  CAS  PubMed  Google Scholar 

  21. Fernández Ocaña M, James IT, Kabir M, Grace C, Yuan G, Martin SW, et al. Clinical pharmacokinetic assessment of an anti-MAdCAM monoclonal antibody therapeutic by LC-MS/MS. Anal Chem. 2012;84(14):5959–67.

    Article  PubMed  Google Scholar 

  22. Sarvaiya H, Niu S, Ladror DT, Wang Y, Maji D, Wolke M, et al. Bioanalytical strategy for the characterization and bioanalysis of biologics: a global, nonregulated bioanalytical lab perspective. Bioanalysis. 2023.

  23. Kaur S, Bateman KP, Glick J, Jairaj M, Kellie JF, Sydor J, et al. IQ consortium perspective: complementary LBA and LC-MS in protein therapeutics bioanalysis and biotransformation assessment. Bioanalysis. 2020;12(4):257–70.

    Article  CAS  PubMed  Google Scholar 

  24. Christianson CC, Johnson CJ, Needham SR. The advantages of microflow LC–MS/MS compared with conventional HPLC–MS/MS for the analysis of methotrexate from human plasma. Bioanalysis. 2013;5(11):1387–96.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang H, Zeng J, Titsch C, Voronin K, Akinsanya B, Luo L, et al. Fully validated LC-MS/MS assay for the simultaneous quantitation of coadministered therapeutic antibodies in cynomolgus monkey serum. Anal Chem. 2013;85(20):9859–67.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang M, An B, Qu Y, Shen S, Fu W, Chen Y-J, et al. Sensitive, high-throughput, and robust trapping-micro-LC-MS strategy for the quantification of biomarkers and antibody biotherapeutics. Anal Chem. 2018;90(3):1870–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Z, Alelyunas YW, Wrona MD, Kehler JR, Szapacs ME, Evans CA. Microflow UPLC and high-resolution MS as a sensitive and robust platform for quantitation of intact peptide hormones. Bioanalysis. 2019;11(13):1275–89.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu Y, Zalaznick J, Sleczka B, Parrish K, Yang Z, Olah T, et al. Immunoaffinity microflow liquid chromatography/tandem mass spectrometry for the quantitation of PD1 and PD-L1 in human tumor tissues. Rapid Commun Mass Spectrom. 2020;34(20): e8896.

    Article  CAS  PubMed  Google Scholar 

  29. Inoue K, Mochizuki T, Kasamori N, Komori T. Determination of drug-to-antibody ratio of antibody–drug conjugate in biological samples using microflow-liquid chromatography/high-resolution mass spectrometry. 2022;14(24):1533–45.

  30. Bian Y, Zheng R, Bayer FP, Wong C, Chang Y-C, Meng C, et al. Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS. Nat Commun. 2020;11(1):157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee A. Loncastuximab tesirine: first approval. Drugs. 2021;81(10):1229–33.

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Ortiz R, Tran L, Hall M, Spahr C, Walker K, et al. General LC-MS/MS method approach to quantify therapeutic monoclonal antibodies using a common whole antibody internal standard with application to preclinical studies. Anal Chem. 2012;84(3):1267–73.

    Article  CAS  PubMed  Google Scholar 

  33. Furlong MT, Ouyang Z, Wu S, Tamura J, Olah T, Tymiak A, et al. A universal surrogate peptide to enable LC-MS/MS bioanalysis of a diversity of human monoclonal antibody and human Fc-fusion protein drug candidates in pre-clinical animal studies. Biomedical Chromatogr: BMC. 2012;26(8):1024–32.

    CAS  Google Scholar 

  34. Li Y, Gu C, Gruenhagen J, Yehl P, Chetwyn NP, Medley CD. An enzymatic deconjugation method for the analysis of small molecule active drugs on antibody-drug conjugates. mAbs. 2016;8(4):698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaur S, Alley SC, Szapacs M, Wilson A, Ciccimaro E, Su D, et al. White paper on recent issues in bioanalysis: mass spec of proteins, extracellular vesicles, CRISPR, chiral assays, oligos; nanomedicines bioanalysis; ICH M10 section 7. Bioanalysis. 2022;14(9):505–80.

    Article  CAS  PubMed  Google Scholar 

  36. Wilm M, Mann M. Analytical properties of the nanoelectrospray ion source. Anal Chem. 1996;68(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lanshoeft C, Heudi O, Cianférani S. SMART Digest™ compared with pellet digestion for analysis of human immunoglobulin G1 in rat serum by liquid chromatography tandem mass spectrometry. Anal Biochem. 2016;501:23–5.

    Article  CAS  PubMed  Google Scholar 

  38. Iwamoto N, Hamada A, Shimada T. Antibody drug quantitation in coexistence with anti-drug antibodies on nSMOL bioanalysis. Anal Biochem. 2018;540–541:30–7.

    Article  PubMed  Google Scholar 

  39. Wang J, Gu H, Liu A, Kozhich A, Rangan V, Myler H, et al. Antibody-drug conjugate bioanalysis using LB-LC-MS/MS hybrid assays: strategies, methodology and correlation to ligand-binding assays. Bioanalysis. 2016;8(13):1383–401.

    Article  CAS  PubMed  Google Scholar 

  40. Krleza JL, Dorotic A, Grzunov A, Maradin M. Capillary blood sampling: national recommendations on behalf of the Croatian Society of Medical Biochemistry and Laboratory Medicine. Biochemia Med. 2015;25(3):335–58.

    Article  Google Scholar 

  41. Raje AA, Mahajan V, Pathade VV, Joshi K, Gavali A, Gaur A, et al. Capillary microsampling in mice: effective way to move from sparse sampling to serial sampling in pharmacokinetics profiling. Xenobiotica. 2020;50(6):663–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank bioscience teams for supporting ADCs for protein analysis by µLC-MS/MS. We also thank Xiaoru Chen for providing technical assistance.

Funding

This research was supported by AstraZeneca R&D.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing, reviewing, and final approval of this manuscript.

Corresponding authors

Correspondence to Moo-jin Suh or Yuling Wu.

Ethics declarations

Conflict of Interest

All authors are employees of AstraZeneca and have stock ownership and/or stock interests or options in the company.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 118 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, Mj., Powers, J.B., Daniels, C.M. et al. Enhanced Pharmacokinetic Bioanalysis of Antibody–drug Conjugates using Hybrid Immunoaffinity Capture and Microflow LC-MS/MS. AAPS J 25, 68 (2023). https://doi.org/10.1208/s12248-023-00835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00835-0

Keywords

Navigation