Skip to main content

Advertisement

Log in

Survey Outcome on Immunogenicity Risk Assessment Tools for Biotherapeutics: an Insight into Consensus on Methods, Application, and Utility in Drug Development

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

A survey conducted by the Therapeutic Product Immunogenicity (TPI) community within the American Association of Pharmaceutical Scientists (AAPS) posed questions to the participants on their immunogenicity risk assessment strategies prior to clinical development. The survey was conducted in 2 phases spanning 5 years, and queried information about in silico algorithms and in vitro assay formats for immunogenicity risk assessments and how the data were used to inform early developability effort in discovery, chemistry, manufacturing and control (CMC), and non-clinical stages of development. The key findings representing the trends from a majority of the participants included the use of high throughput in silico algorithms, human immune cell-based assays, and proteomics based outputs, as well as specialized assays when therapeutic mechanism of action could impact risk assessment. Additional insights into the CMC-related risks could also be gathered with the same tools to inform future process development and de-risk critical quality attributes with uncertain and unknown risks. The use of the outputs beyond supporting early development activities was also noted with participants utilizing the risk assessments to drive their clinical strategy and streamline bioanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Walsh RE, Lannan M, Wen Y, Wang X, Moreland CA, Willency J, et al. Post-hoc assessment of the immunogenicity of three antibodies reveals distinct immune stimulatory mechanisms. mAbs. 2020;12(1):1764829.

  2. Jenkins MK, Moon JJ. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J Immunol. 2012;188(9):4135–40.

    Article  CAS  PubMed  Google Scholar 

  3. Delluc S, Ravot G, Maillere B. Quantitative analysis of the CD4 T-cell repertoire specific to therapeutic antibodies in healthy donors. FASEB J. 2011;25(6):2040–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hamze M, Meunier S, Karle A, Gdoura A, Goudet A, Szely N, et al. Characterization of CD4 T cell epitopes of infliximab and rituximab identified from healthy donors. Front Immunol. 2017;8:500.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ducret A, Ackaert C, Bessa J, Bunce C, Hickling T, Jawa V, et al. Assay format diversity in pre-clinical immunogenicity risk assessment: toward a possible harmonization of antigenicity assays. MAbs. 2022;14(1):1993522.

    Article  PubMed  Google Scholar 

  6. Deora A, Hegde S, Lee J, Choi CH, Chang Q, Lee C, et al. Transmembrane TNF-dependent uptake of anti-TNF antibodies. MAbs. 2017;9(4):680–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xue L, Hickling T, Song R, Nowak J, Rup B. Contribution of enhanced engagement of antigen presentation machinery to the clinical immunogenicity of a human interleukin (IL)-21 receptor-blocking therapeutic antibody. Clin Exp Immunol. 2016;183(1):102–13.

    Article  CAS  PubMed  Google Scholar 

  8. Wen Y, Cahya S, Zeng W, Lin J, Wang X, Liu L, et al. Development of a FRET-based assay for analysis of mAbs internalization and processing by dendritic cells in preclinical immunogenicity risk assessment. AAPS J. 2020;22(3):68.

    Article  CAS  PubMed  Google Scholar 

  9. Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, et al. T-cell dependent immunogenicity of protein therapeutics pre-clinical assessment and mitigation–updated consensus and review 2020. Front Immunol. 2020;11(1301):1–23.

    Google Scholar 

  10. Murphy K, Casey W. Janeway’s Immunobiology. Ninthe. New York: Garland Science; 2017.

    Google Scholar 

  11. Wen Y, Jawa V. The impact of product and process related critical quality attributes on immunogenicity and adverse immunological effects of biotherapeutics. J Pharm Sci. 2021;110(3):1025–41.

    Article  CAS  PubMed  Google Scholar 

  12. Jarvi NL, Balu-Iyer SV. Immunogenicity challenges associated with subcutaneous delivery of therapeutic proteins. BioDrugs. 2021;35(2):125–46.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87–104.

    Article  CAS  PubMed  Google Scholar 

  14. Grimaldi C, Finco D, Fort MM, Gliddon D, Harper K, Helms WS, et al. Cytokine release: a workshop proceedings on the state-of-the-science, current challenges and future directions. Cytokine. 2016;85:101–8.

    Article  CAS  PubMed  Google Scholar 

  15. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome. J Immunother Cancer. 2018;6(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vessillier S, Eastwood D, Fox B, Sathish J, Sethu S, Dougall T, et al. Cytokine release assays for the prediction of therapeutic mAb safety in first-in man trials–whole blood cytokine release assays are poorly predictive for TGN1412 cytokine storm. J Immunol Methods. 2015;424:43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finco D, Grimaldi C, Fort M, Walker M, Kiessling A, Wolf B, et al. Cytokine release assays: current practices and future directions. Cytokine. 2014;66(2):143–55.

    Article  CAS  PubMed  Google Scholar 

  18. Vessillier S, Fort M, O’Donnell L, Hinton H, Nadwodny K, Piccotti J, et al. Development of the first reference antibody panel for qualification and validation of cytokine release assay platforms - report of an international collaborative study. Cytokine X. 2020;2(4): 100042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124(2):188–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quarmby V, Phung QT, Lill JR. MAPPs for the identification of immunogenic hotspots of biotherapeutics; an overview of the technology and its application to the biopharmaceutical arena. Expert Rev Proteomics. 2018;15(9):733–48.

    Article  CAS  PubMed  Google Scholar 

  21. Kropshofer H, Singer T. Overview of cell-based tools for pre-clinical assessment of immunogenicity of biotherapeutics. J Immunotoxicol. 2006;3(3):131–6.

    Article  PubMed  Google Scholar 

  22. Paul S, Lindestam Arlehamn CS, Scriba TJ, Dillon MB, Oseroff C, Hinz D, et al. Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes. J Immunol Methods. 2015;422:28–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J. 2021;19:315–29.

    Article  CAS  PubMed  Google Scholar 

  24. Moise L, Song C, Martin WD, Tassone R, De Groot AS, Scott DW. Effect of HLA DR epitope de-immunization of factor VIII in vitro and in vivo. Clin Immunol. 2012;142(3):320–31.

    Article  CAS  PubMed  Google Scholar 

  25. Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ, Jukema JW, et al. Lipid-reduction variability and antidrug-antibody formation with Bococizumab. N Engl J Med. 2017;376(16):1517–26.

    Article  CAS  PubMed  Google Scholar 

  26. Hua F, Comer GM, Stockert L, Jin B, Nowak J, Pleasic-Williams S, et al. Anti-IL21 receptor monoclonal antibody (ATR-107): safety, pharmacokinetics, and pharmacodynamic evaluation in healthy volunteers: a phase I, first-in-human study. J Clin Pharmacol. 2014;54(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  27. Welt S, Ritter G, Williams C Jr, Cohen LS, John M, Jungbluth A, et al. Phase I study of anticolon cancer humanized antibody A33. Clin Cancer Res. 2003;9(4):1338–46.

    CAS  PubMed  Google Scholar 

  28. Stern LJ, Santambrogio L. The melting pot of the MHC II peptidome. Curr Opin Immunol. 2016;40:70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiskoot W, Kijanka G, Randolph TW, Carpenter JF, Koulov AV, Mahler HC, et al. Mouse models for assessing protein immunogenicity: lessons and challenges. J Pharm Sci. 2016;105(5):1567–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wickramarachchi D, Steeno G, You Z, Shaik S, Lepsy C, Xue L. Fit-for-purpose validation and establishment of assay acceptance and reporting criteria of dendritic cell activation assay contributing to the assessment of immunogenicity risk. AAPS J. 2020;22:114.

  31. Wullner D, Zhou L, Bramhall E, Kuck A, Goletz TJ, Swanson S, et al. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clin Immunol. 2010;137(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  32. Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin Immunol. 2013;149(3):534–55.

    Article  CAS  PubMed  Google Scholar 

  33. Bertolini TB, Shirley JL, Zolotukhin I, Li X, Kaisho T, Xiao W, et al. Effect of CpG depletion of vector genome on CD8(+) T cell responses in AAV gene therapy. Front Immunol. 2021;12: 672449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konkle BA, Walsh CE, Escobar MA, Josephson NC, Young G, von Drygalski A, et al. BAX 335 hemophilia B gene therapy clinical trial results: potential impact of CpG sequences on gene expression. Blood. 2021;137(6):763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wright JF. Codon modification and PAMPs in clinical AAV vectors: the tortoise or the hare? Mol Ther. 2020;28(3):701–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer. Mol Ther. 2020;28(3):723–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. FDA (2014) Guidance for industry: immunogenicity assessment for therapeutic protein products. https://www.fda.gov/media/85017/download. Accessed on April 25, 2021.

  39. Siegel M, Steiner G, Franssen LC, Carratu F, Herron J, Hartman K, et al. Validation of a dendritic cell and CD4+ T cell restimulation assay contributing to the immunogenicity risk evaluation of biotherapeutics. Pharmaceutics. 2022;14:2672.

  40. Cohen S, Myneni S, Batt A, Guerrero J, Brumm J, Chung S. Immunogenicity risk assessment for biotherapeutics through in vitro detection of CD134 and CD137 on T helper cells. MAbs. 2021;13(1):1898831.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Jochem G. and Shibani M–K. conceived the project and performed the survey. Jochem G., Yi W., and Vibha J. analyzed the data and wrote the manuscript. Jochem G., Shibani M–K., Theresa G., Swati G., Shan C., Alan G., Seema K., Kasper L., Karen L., Jennie L., Qui P., Robin W., Brian R., Michael S., Inderpal S., Sophie T., Mark K., Laurent M., and Sofie P. responded to the survey and provided data. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Jochem Gokemeijer.

Ethics declarations

Conflict of Interest

Jochem G. and Vibha J. are employees of Bristol Myers Squibb, Yi W., Robin W., and Laurent M. are employees of Eli Lilly and Company. Shibani Mitra-Kaushik is an employee of Takeda Pharmaceuticals. Theresa Goletz is an employee of GSK. Bonita Rup works as an independent consultant. Swati Gupta is employee of AbbVie. Jennie Lill and Qui Phung are employees of Genentech. Mark Kroenke is an employee of Amgen. Seema Kumar is an employee of EMD Serono. Alan Goggins is an employee of Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA. Karen Liao is an employee of Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA currently, and was employed by GSK at survey participation.

Disclaimer

The views and opinions expressed in this manuscript do not represent the views and opinions of their employers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokemeijer, J., Wen, Y., Jawa, V. et al. Survey Outcome on Immunogenicity Risk Assessment Tools for Biotherapeutics: an Insight into Consensus on Methods, Application, and Utility in Drug Development. AAPS J 25, 55 (2023). https://doi.org/10.1208/s12248-023-00820-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00820-7

Keywords

Navigation