Skip to main content

Advertisement

Log in

Impact of Organ Impairment on the Pharmacokinetics of Therapeutic Peptides and Proteins

  • Commentary
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The kidneys and liver are major organs involved in eliminating small-molecule drugs from the body. Characterization of the effects of renal impairment (RI) and hepatic impairment (HI) on pharmacokinetics (PK) have informed dosing in patients with these organ impairments. However, the knowledge about the impact of organ impairment on therapeutic peptides and proteins is still evolving. In this study, we reviewed how often therapeutic peptides and proteins were assessed for the effect of RI and HI on PK, the findings, and the resulting labeling recommendations. RI effects were reported in labeling for 30 (57%) peptides and 98 (39%) proteins and HI effects for 20 (38%) peptides and 55 (22%) proteins. Dose adjustments were recommended for RI in 11 of the 30 (37%) peptides and 10 of the 98 (10%) proteins and for HI in 7 of the 20 (35%) peptides and 3 of the 55 (5%) proteins. Additional actionable labeling includes risk mitigation strategies; for example, some product labels have recommended avoid use or monitor toxicities in patients with HI. Over time, there is an increasing structural diversity of therapeutic peptides and proteins, including the use of non-natural amino acids and conjugation technologies, which suggests a potential need for reassessing the need to evaluate the effect of RI and HI. Herein, we discuss scientific considerations for weighing the risk of PK alteration due to RI or HI for peptide and protein products. We briefly discuss other organs that may affect the PK of peptides and proteins administered via other delivery routes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Talal AH, Venuto CS, Younis I. Assessment of hepatic impairment and implications for pharmacokinetics of substance use treatment. Clin Pharmacol Drug Dev. 2017;6(2):206–12. https://doi.org/10.1002/cpdd.336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sahre MD, Milligan L, Madabushi R, Graham RA, Reynolds KS, Terzic A, et al. Evaluating patients with impaired renal function during drug development: highlights from the 2019 US FDA pharmaceutical science and clinical pharmacology advisory committee meeting. Clin Pharmacol Ther. 2021;110(2):285–8. https://doi.org/10.1002/cpt.2151.

    Article  PubMed  Google Scholar 

  3. Sun Q, Seo S, Zvada S, Liu C, Reynolds K. Does hepatic impairment affect the exposure of monoclonal antibodies? Clin Pharmacol Ther. 2020;107(5):1256–62. https://doi.org/10.1002/cpt.1765.

    Article  CAS  PubMed  Google Scholar 

  4. Meibohm B, Zhou H. Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol. 2012;52(1 Suppl):54S-62S. https://doi.org/10.1177/0091270011413894.

    Article  PubMed  Google Scholar 

  5. Mahmood I, Pettinato M. Impact of intrinsic and extrinsic factors on the pharmacokinetics of peptides: when is the assessment of certain factors warranted? Antibodies. 2022;11(1):1.

    Article  CAS  Google Scholar 

  6. Administration UFaD. Federal register: definition of the term “biological product”. 2020; Available from: https://www.federalregister.gov/documents/2020/02/21/2020-03505/definition-of-the-term-biological-product.

  7. Zhao L, Ren TH, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin. 2012;33(11):1339–47. https://doi.org/10.1038/aps.2012.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Diao L, Meibohm B. Pharmacokinetics and pharmacokinetic-pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet. 2013;52(10):855–68. https://doi.org/10.1007/s40262-013-0079-0.

    Article  CAS  PubMed  Google Scholar 

  9. Czock D, Keller F, Seidling HM. Pharmacokinetic predictions for patients with renal impairment: focus on peptides and protein drugs. Br J Clin Pharmacol. 2012;74(1):66–74. https://doi.org/10.1111/j.1365-2125.2012.04172.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lau JL, Dunn MK. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem. 2018;26(10):2700–7. https://doi.org/10.1016/j.bmc.2017.06.052.

    Article  CAS  PubMed  Google Scholar 

  11. Yayne D, Yiu V. Hematuria and Proteinuria. In: National Kidney Foundation Primer on Kidney Diseases (Sixth Edition). In: Gilbert SJ, Weiner DE, editors. 2014, p. 42–50. https://doi.org/10.1016/B978-1-4557-4617-0.00005-4.

  12. de Souza DB, Gregório BM, Benchimol M, Nascimento FA de M. Evaluation of the Glomerular Filtration Barrier by Electron Microscopy. In: Modern Electron Microscopy in Physical and Life Sciences. In Tech. 2016. https://doi.org/10.5772/61811.

  13. Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol Renal Physiol. 2005;288(4):605–13. https://doi.org/10.1152/ajprenal.00171.2004.

    Article  CAS  Google Scholar 

  14. Ohlson M, Sorensson J, Lindstrom K, Blom AM, Fries E, Haraldsson B. Effects of filtration rate on the glomerular barrier and clearance of four differently shaped molecules. Am J Physiol Renal Physiol. 2001;281(1):F103–13. https://doi.org/10.1152/ajprenal.2001.281.1.F103.

    Article  CAS  PubMed  Google Scholar 

  15. Akizawa H, Uehara T, Arano Y. Renal uptake and metabolism of radiopharmaceuticals derived from peptides and proteins. Adv Drug Deliv Rev. 2008;60(12):1319–28. https://doi.org/10.1016/j.addr.2008.04.005.

    Article  CAS  PubMed  Google Scholar 

  16. US Food and Drug Administration. Guidance for industry (draft) - pharmacokinetics in patients with Impaired renal function — study design, data analysis, and impact on dosing and labeling. 2020. https://www.fda.gov/media/78573/download.

  17. Zeuzem S, Welsch C, Herrmann E. Pharmacokinetics of peginterferons. Semin Liver Dis. 2003;23(Suppl 1):23–8. https://doi.org/10.1055/s-2003-41631.

    Article  PubMed  Google Scholar 

  18. Knudsen LB, Lau J. The discovery and development of liraglutide and semaglutide. Front Endocrinol. 2019;10:155. https://doi.org/10.3389/fendo.2019.00155.

    Article  Google Scholar 

  19. Fogueri U, Cheungapasitporn W, Bourne D, Fervenza FC, Joy MS. Rituximab exhibits altered pharmacokinetics in patients with membranous nephropathy. Ann Pharmacother. 2019;53(4):357–63. https://doi.org/10.1177/1060028018803587.

    Article  CAS  PubMed  Google Scholar 

  20. Roberts BV, Susano I, Gipson DS, Trachtman H, Joy MS. Contribution of renal and non-renal clearance on increased total clearance of adalimumab in glomerular disease. J Clin Pharmacol. 2013;53(9):919–24. https://doi.org/10.1002/jcph.121.

    Article  CAS  PubMed  Google Scholar 

  21. US prescribing information for lisinopril. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/019558s063lbl.pdf.

  22. US prescribing information for enalapril. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/018998s083lbl.pdf.

  23. US prescribing information for ixazomib. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/208462s012s013lbl.pdf.

  24. US prescribing information for carfilzomib. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/202714s034lbl.pdf.

  25. US prescribing information for eptifibatide. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020718s039lbl.pdf.

  26. US prescribing information for octreotide acetate 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/019667s073lbl.pdf.

  27. US prescribing information for bremelanotide 2020; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/210557s002lbl.pdf.

  28. US prescribing information for lanreotide. 2019; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/022074s024lbl.pdf.

  29. US prescribing information for setmelanotide. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/213793s001lbl.pdf.

  30. US prescribing information for desmopressin. 2018.

  31. US prescribing information for cyclosporine. 2015; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/050573s041,050574s051,050625s055lbl.pdf

  32. US prescribing information for voclosporin. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213716s000lbl.pdf.

  33. US prescribing information for goserelin. 2015; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/019726s059,020578s037lbl.pdf.

  34. US prescribing information for triptorelin. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/020715s040,021288s035,022427s015lbl.pdf.

  35. US prescribing information for bivalirudin. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208374s002lbl.pdf.

  36. US prescribing information for liraglutide. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/022341s037s038lbl.pdf.

  37. US prescribing information for teduglutide 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/203441s018lbl.pdf.

  38. US prescribing information for abaloparatide. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208743s010lbl.pdf.

  39. US prescribing information for teriparatide. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208743s010lbl.pdf.

  40. US prescribing information for exenatide. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/021773s046s047lbl.pdf.

  41. US prescribing information for lixisenatide. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/208471s004lbl.pdf.

  42. US prescribing information for desirudin. 2014; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021271s006lbl.pdf.

  43. US prescribing information for anakinra. 2020; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/103950s5189lbl.pdf.

  44. US prescribing information for peginterferon alfa-2b. 2014; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/103949s5313lbl.pdf.

  45. US prescribing information for peginterferon beta-1a. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125499s025lbl.pdf.

  46. US Prescribing information for dulaglutide. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125469s046s052lbl.pdf.

  47. US prescribing information for brentuximab vedotin. 2019; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125388s100lbl.pdf.

  48. Liu SN, Li C. Clinical pharmacology strategies in supporting drug development and approval of antibody-drug conjugates in oncology. Cancer Chemother Pharmacol. 2021;87(6):743–65. https://doi.org/10.1007/s00280-021-04250-0.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schadt S, Hauri S, Lopes F, Edelmann MR, Staack RF, Villasenor R, et al. Are biotransformation studies of therapeutic proteins needed? Scientific considerations and technical challenges. Drug Metab Dispos. 2019;47(12):1443–56. https://doi.org/10.1124/dmd.119.088997.

    Article  CAS  PubMed  Google Scholar 

  50. Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67. https://doi.org/10.1007/s00726-005-0289-3.

    Article  CAS  PubMed  Google Scholar 

  51. US Food and Drug Administration. Guidance for industry - pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling. 2003. https://www.fda.gov/media/71311/download.

  52. Yao JF, Yang H, Zhao YZ, Xue M. Metabolism of peptide drugs and strategies to improve their metabolic stability. Curr Drug Metab. 2018;19(11):892–901. https://doi.org/10.2174/1389200219666180628171531.

    Article  CAS  PubMed  Google Scholar 

  53. Delaforge M, Bouille G, Jaouen M, Jankowski CK, Lamouroux C, Bensoussan C. Recognition and oxidative metabolism of cyclodipeptides by hepatic cytochrome P450. Peptides. 2001;22(4):557–65. https://doi.org/10.1016/s0196-9781(01)00364-3.

    Article  CAS  PubMed  Google Scholar 

  54. Watkins PB. The role of cytochromes P-450 in cyclosporine metabolism. J Am Acad Dermatol. 1990;23(6 Pt 2):1301–9; discussion 9–11. https://doi.org/10.1016/0190-9622(90)70358-o.

  55. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19. https://doi.org/10.1158/1541-7786.MCR-19-0582.

    Article  CAS  PubMed  Google Scholar 

  56. US prescribing information for bortezomib. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021602s046lbl.pdf.

  57. US prescribing information for pasireotide. 2020; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/200677s006lbl.pdf

  58. US prescribing information for romidepsin. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/022393s017lbl.pdf.

  59. Connolly RM, Laille E, Vaishampayan U, Chung V, Kelly K, Dowlati A, et al. Phase I and Pharmacokinetic study of romidepsin in patients with cancer and hepatic dysfunction: a National Cancer Institute Organ Dysfunction Working Group study. Clin Cancer Res. 2020;26(20):5329–37. https://doi.org/10.1158/1078-0432.CCR-20-1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang J, Shord S, Zhao H, Men Y, Rahman A. Are hepatic impairment studies necessary for therapeutic proteins? Clin Ther. 2013;35(9):1444–51. https://doi.org/10.1016/j.clinthera.2013.06.010.

    Article  CAS  PubMed  Google Scholar 

  61. Gibbs JP, Slatter JG, Egbuna O, Geller M, Hamilton L, Dias CS, et al. Evaluation of evolocumab (AMG 145), a fully human anti-PCSK9 IgG2 monoclonal antibody, in subjects with hepatic impairment. J Clin Pharmacol. 2017;57(4):513–23. https://doi.org/10.1002/jcph.832.

    Article  CAS  PubMed  Google Scholar 

  62. US prescribing information for evolocumab. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125522s033lbl.pdf.

  63. Li C, Agarwal P, Gibiansky E, Jin JY, Dent S, Goncalves A, et al. A phase I pharmacokinetic study of trastuzumab emtansine (T-DM1) in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer and normal or reduced hepatic function. Clin Pharmacokinet. 2017;56(9):1069–80. https://doi.org/10.1007/s40262-016-0496-y.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao B, Chen R, O’Connor OA, Gopal AK, Ramchandren R, Goy A, et al. Brentuximab vedotin, an antibody-drug conjugate, in patients with CD30-positive haematologic malignancies and hepatic or renal impairment. Br J Clin Pharmacol. 2016;82(3):696–705. https://doi.org/10.1111/bcp.12988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. BentzDamholt B, Dombernowsky SL, Dahl Bendtsen M, Bisgaard C, Hojby RM. Effect of kidney or hepatic impairment on the pharmacokinetics and pharmacodynamics of somapacitan: two open-label, parallel-group trials. Clin Pharmacokinet. 2021;60(8):1015–27. https://doi.org/10.1007/s40262-021-00990-7.

    Article  CAS  Google Scholar 

  66. US prescribing information for alirocumab. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125559s029s030lbl.pdf.

  67. US Food and Drug Administration. Clinical pharmacology and biopharmaceutics reivew for alirobumab. 2015; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2015/125559Orig1s000ClinPharmR.pdf.

  68. US Food and Drug Administration. Clinical pharmacology and biopharmaceutics review for Rituximab and hyaluronidase. 2017; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761064Orig1s000ClinPharmR.pdf.

  69. US prescribing information for bezlotoxumab. 2016; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761046s000lbl.pdf.

  70. US prescribing information for mogamulizumab 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761051s015lbl.pdf.

  71. Center for Drug Evaluation and Research. Multidiscipline review of mogamulizumab. 2018; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761051Orig1s000MultidisciplineR.pdf.

  72. US prescribing information for ado-trastuzumab emtansine. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/125427s111lbl.pdf.

  73. Multidisciplinary review of belantamab mafodotin. 2020; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/761158Orig1s000MultidisciplineR.pdf.

  74. US prescribing information for enfortumab vedotin. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761137s006s008lbl.pdf.

  75. US prescribing information for inotuzumab ozogamicin. 2017; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761040s000lbl.pdf.

  76. Center for Drug Evaluation and Research. Loncastuximab tesirine-lpyl Review (https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/761196Orig1s000MultidisciplineR.pdf). 2021.

  77. US prescribing information for loncastuximab tesirine. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761196s000lbl.pdf.

  78. US prescribing information for tisotumab vedotin. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761208Orig1s000lbledt.pdf.

  79. US prescribing information for trastuzumab deruxtecan. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761139s021lbl.pdf.

  80. Center for Drug Evaluation and Research. Multidiscipline review for trastuzumab deruxtecan. 2019; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/761139Orig1s000MultidisciplineR.pdf.

  81. US prescribing information for insulin detemir. 2022; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/021536s060lbl.pdf.

  82. Center for Drug Evaluation and Research. Clinical pharmacology and biopharmaceutics review for insulin detemir. 2005; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021-536_Levemir_biopharmr.PDF.

  83. US prescribing information for somapacitan. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761156s001s002lbl.pdf.

  84. US prescribing information for abatacept. 2021; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/125118s240lbl.pdf.

  85. Nakhaei E, Takehara K, Sato H, Zai K, Kishimura A, Mori T, et al. A dual alkylated peptide-ligand enhances affinity to human serum albumin. Anal Sci. 2018;34(4):501–4. https://doi.org/10.2116/analsci.17P614.

    Article  PubMed  Google Scholar 

  86. Zorzi A, Middendorp SJ, Wilbs J, Deyle K, Heinis C. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides. Nat Commun. 2017;8:16092. https://doi.org/10.1038/ncomms16092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. US Food and Drug Administration. Guidance for Industry - Cancer clinical trial eligibility criteria: patients with organ dysfunction or prior or concurrent malignancies. 2020. https://www.fda.gov/media/123745/download

  88. US Food and Drug Administration. Guidance for industry (draft) - Clinical pharmacology considerations for antibody-drug conjugates. 2022. https://www.fda.gov/media/155997/download.

  89. Morales JO, Fathe KR, Brunaugh A, Ferrati S, Li S, Montenegro-Nicolini M, et al. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J. 2017;19(3):652–68. https://doi.org/10.1208/s12248-017-0054-z.

    Article  CAS  PubMed  Google Scholar 

  90. Anselmo AC, Gokarn Y, Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discovery. 2019;18(1):19–40. https://doi.org/10.1038/nrd.2018.183.

    Article  CAS  PubMed  Google Scholar 

  91. Fröhlich E, Salar-Behzadi S. Oral inhalation for delivery of proteins and peptides to the lungs. Eur J Pharm Biopharm. 2021;163:198–211. https://doi.org/10.1016/j.ejpb.2021.04.003.

    Article  CAS  PubMed  Google Scholar 

  92. Yoon HY, Yang HM, Kim CH, Goo YT, Kang MJ, Lee S, et al. Current status of the development of intravesical drug delivery systems for the treatment of bladder cancer. Expert Opin Drug Deliv. 2020;17(11):1555–72. https://doi.org/10.1080/17425247.2020.1810016.

    Article  CAS  PubMed  Google Scholar 

  93. Matthews AA, Ee PLR, Ge R. Developing inhaled protein therapeutics for lung diseases. Molecular Biomedicine. 2020;1(1):11. https://doi.org/10.1186/s43556-020-00014-z.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Liang W, Pan HW, Vllasaliu D, Lam JKW. Pulmonary delivery of biological drugs Pharmaceutics. 2020;12(11):1025.

    CAS  PubMed  Google Scholar 

  95. Easa N, Alany RG, Carew M, Vangala A. A review of non-invasive insulin delivery systems for diabetes therapy in clinical trials over the past decade. Drug Discov Today. 2019;24(2):440–51. https://doi.org/10.1016/j.drudis.2018.11.010.

    Article  CAS  PubMed  Google Scholar 

  96. Ceglia L, Lau J, Pittas AG. Meta-analysis: efficacy and safety of inhaled insulin therapy in adults with diabetes mellitus. Ann Intern Med. 2006;145(9):665–75. https://doi.org/10.7326/0003-4819-145-9-200611070-00009.

    Article  PubMed  Google Scholar 

  97. Chemaly RF, Marty FM, Wolfe CR, Lawrence SJ, Dadwal S, Soave R, et al. DAS181 treatment of Severe lower respiratory tract parainfluenza virus infection in immunocompromised patients: a phase 2 randomized, placebo-controlled study. Clin Infect Dis. 2021;73(3):e773–81. https://doi.org/10.1093/cid/ciab113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. TorinHuzil J, Sivaloganathan S, Kohandel M, Foldvari M. Drug delivery through the skin: molecular simulations of barrier lipids to design more effective noninvasive dermal and transdermal delivery systems for small molecules, biologics, and cosmetics. WIREs Nanomed Nanobiotechnol. 2011;3(5):449–62. https://doi.org/10.1002/wnan.147.

    Article  CAS  Google Scholar 

  99. Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine: Nanotechnol, Biol Med. 2015;11(6):1551–73.

    Article  CAS  Google Scholar 

  100. Bashaw ED, Tran DC, Shukla CG, Liu X. Maximal usage trial: an overview of the design of systemic bioavailability trial for topical dermatological products. Ther Innov Regul Sci. 2015;49(1):108–15. https://doi.org/10.1177/2168479014539157.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Dr. Rajanikanth Madabushi for the review of the manuscript, Cara Carter and Westley Eure for collecting the survey data related to peptides, and colleagues in the Office of Clinical Pharmacology through their review contributions that provided pharmacokinetics information in organ-impaired subjects which form the basis of this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the manuscript preparation.

Corresponding author

Correspondence to Yow-Ming C. Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The opinions expressed in this article are those of the authors and should not be interpreted as the position of the US Food and Drug Administration.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, E.P., Sahre, M., Hon, Y.Y. et al. Impact of Organ Impairment on the Pharmacokinetics of Therapeutic Peptides and Proteins. AAPS J 25, 54 (2023). https://doi.org/10.1208/s12248-023-00819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00819-0

Keywords

Navigation