Skip to main content

Advertisement

Log in

Micellar Encapsulation of Propofol Reduces its Adsorption on Extracorporeal Membrane Oxygenator (ECMO) Circuit

  • Research Article
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Extracorporeal membrane oxygenation (ECMO) is a life-saving cardiopulmonary bypass device used on critically ill patients with refractory heart and lung failure. Patients supported with ECMO receive numerous drugs to treat critical illnesses and the underlying diseases. Unfortunately, most drugs prescribed to patients on ECMO lack accurate dosing information. Dosing can be variable in this patient population because the ECMO circuit components can adsorb drugs and affect drug exposure substantially. Propofol is a widely used anesthetic in ECMO patients and is known to have high adsorption rates in ECMO circuits due to its high hydrophobicity. In an attempt to reduce adsorption, we encapsulated propofol with Poloxamer 407 (Polyethylene-Polypropylene Glycol). Size and polydispersity index (PDI) were characterized using dynamic light scattering. Encapsulation efficiency was analyzed using High performance liquid chromatography. Cytocompatibility of micelles was analyzed against human macrophages and the formulation was finally injected in an ex-vivo ECMO circuit to determine the adsorption of propofol. Size and PDI of micellar propofol were 25.5 ± 0.8 nm and 0.08 ± 0.01, respectively. Encapsulation efficiency of the drug was 96.1 ± 1.3%. Micellar propofol demonstrated colloidal stability at physiological temperature for a period of 7 days, and was cytocompatible with human macrophages. Micellar propofol demonstrated a significant reduction in adsorption of propofol in the ECMO circuit at earlier time points compared to free propofol (Diprivan®). We observed 97 ± 2% recovery of the propofol from the micellar formulation after an infusion. These results demonstrate the potential of micellar propofol to reduce drug adsorption to ECMO circuit.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buck ML. Pharmacokinetic changes during extracorporeal membrane oxygenation: implications for drug therapy of neonates. Clin Pharmacokinet. 2003;42:403–17.

    Article  CAS  PubMed  Google Scholar 

  2. Sherwin J, Heath T, Watt K. Pharmacokinetics and dosing of anti-infective drugs in patients on extracorporeal membrane oxygenation: a review of the current literature. Clin Ther. 2016;38:1976–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watt K, Li JS, Benjamin DK, Cohen-Wolkowiez M. Pediatric cardiovascular drug dosing in critically ill children and extracorporeal membrane oxygenation. J Cardiovasc Pharmacol. 2011;58:126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Palmgrén JJ, Mönkkönen J, Korjamo T, Hassinen A, Auriola S. Drug adsorption to plastic containers and retention of drugs in cultured cells under in vitro conditions. Eur J Pharm Biopharm. 2006;64:369–78.

    Article  PubMed  Google Scholar 

  5. Preston TJ, Hodge AB, Riley JB, Leib-Sargel C, Nicol KK. In vitro drug adsorption and plasma free hemoglobin levels associated with hollow fiber oxygenators in the extracorporeal life support (ECLS) circuit. J Extra Corpor Technol. 2007;39:234–7.

    PubMed  PubMed Central  Google Scholar 

  6. Preston TJ, Ratliff TM, Gomez D, Olshove VE, Nicol KK, Sargel CL, Chicoine LG. Modified surface coatings and their effect on drug adsorption within the extracorporeal life support circuit. J Extra Corpor Technol. 2010;42:199–202.

    PubMed  PubMed Central  Google Scholar 

  7. Unger JK, Kuehlein G, Schroers A, Gerlach JC, Rossaint R. Adsorption of xenobiotics to plastic tubing incorporated into dynamic in vitro systems used in pharmacological research--limits and progress. Biomater. 2001;22:2031–7.

    Article  CAS  Google Scholar 

  8. Ahsman MJ, Hanekamp M, Wildschut ED, Tibboel D, Mathot RA. Population pharmacokinetics of midazolam and its metabolites during venoarterial extracorporeal membrane oxygenation in neonates. Clin Pharmacokinet. 2010;49:407–19.

    Article  CAS  PubMed  Google Scholar 

  9. Ahsman MJ, Wildschut ED, Tibboel D, Mathot RA. Pharmacokinetics of cefotaxime and desacetylcefotaxime in infants during extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2010;54:1734–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Harthan AA, Buckley KW, Heger ML, Fortuna RS, Mays K. Medication adsorption into contemporary extracorporeal membrane oxygenator circuits. J Pediatr Pharmacol Ther. 2014;19:288–95.

    PubMed  PubMed Central  Google Scholar 

  11. van der Vorst MM, Wildschut E, Houmes RJ, Gischler SJ, Kist-van Holthe JE, Burggraaf J, van der Heijden AJ, Tibboel D. Evaluation of furosemide regimens in neonates treated with extracorporeal membrane oxygenation. Crit Care. 2006;10:R168.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wildschut ED, de Hoog M, Ahsman MJ, Tibboel D, Osterhaus AD, Fraaij PL. Plasma concentrations of oseltamivir and oseltamivir carboxylate in critically ill children on extracorporeal membrane oxygenation support. PLoS One. 2010;5:e10938.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mulla H, Lawson G, von Anrep C, Burke MD, Upton DU, Firmin RK, Killer H. In vitro evaluation of sedative drug losses during extracorporeal membrane oxygenation. Perfusion. 2000;15:21–6.

    Article  CAS  PubMed  Google Scholar 

  14. Mehta NM, Halwick DR, Dodson BL, Thompson JE, Arnold JH. Potential drug sequestration during extracorporeal membrane oxygenation: results from an ex vivo experiment. Intensive Care Med. 2007;33:1018–24.

    Article  CAS  PubMed  Google Scholar 

  15. Thompson KA, Goodale DB. The recent development of propofol (DIPRIVAN). Intensive Care Med. 2000;26(Suppl 4):S400–4.

    Article  PubMed  Google Scholar 

  16. Servin F, Desmonts JM, Haberer JP, Cockshott ID, Plummer GF, Farinotti R. Pharmacokinetics and protein binding of propofol in patients with cirrhosis. Anesthesiol. 1988;69:887–91.

    Article  CAS  Google Scholar 

  17. Lemaitre F, Hasni N, Leprince P, Corvol E, Belhabib G, Fillâtre P, Luyt CE, Leven C, Farinotti R, Fernandez C, Combes A. Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit Care. 2015;19:40.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kabanov AV, Alakhov VY. Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst. 2002;19:1–72.

    Article  CAS  PubMed  Google Scholar 

  19. Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst. 2003;20:357–403.

    Article  CAS  PubMed  Google Scholar 

  20. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82:189–212.

    Article  CAS  PubMed  Google Scholar 

  21. Imburgia CE, Rower JE, Green DJ, Mcknite AM, Kelley WE, Reilly CA, Watt KM. Remdesivir and GS-441524 extraction by ex vivo extracorporeal life support circuits. ASAIO J. 2022;68:1204–10.

    Article  CAS  PubMed  Google Scholar 

  22. Wright SP. Adjusted P-values for simultaneous inference. Biom. 1992;48:1005–13.

    Article  Google Scholar 

  23. Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.

    Article  Google Scholar 

  24. He T, He J, Wang Z, Cui Z. Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). Adv Compos Hybrid Mater. 2021;4:847–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Wan Kim S, Seo MH. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release. 2001;72:191–202.

    Article  CAS  PubMed  Google Scholar 

  26. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92.

    Article  CAS  PubMed  Google Scholar 

  27. Daniel JM, Bernard PA, Skinner SC, Bhandary P, Ruzic A, Bacon MK, Ballard HO. Hollow Fiber oxygenator composition has a significant impact on failure rates in neonates on extracorporeal membrane oxygenation: a retrospective analysis. J Pediatr Intensive Care. 2018;7:7–13.

    Article  PubMed  Google Scholar 

  28. Lequier L, Horton SB, McMullan DM, Bartlett RH. Extracorporeal membrane oxygenation circuitry. Pediatr Crit Care Med. 2013;14:S7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fragomeni G, Terzini M, Comite A, Catapano G. The maximal pore size of hydrophobic microporous membranes does not fully characterize the resistance to plasma breakthrough of membrane devices for extracorporeal blood oxygenation. Front Bioeng Biotechnol. 2019;7:461.

    Article  PubMed  Google Scholar 

  30. Dumortier G, Grossiord JL, Agnely F, Chaumeil JC. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res. 2006;23:2709–28.

    Article  CAS  PubMed  Google Scholar 

  31. Fakhar-Ud-Din, Khan GM. Development and characterisation of levosulpiride-loaded suppositories with improved bioavailability in vivo. Pharm Dev Technol. 2019;24:63–9.

    Article  CAS  PubMed  Google Scholar 

  32. Alakhov V, Klinski E, Lemieux P, Pietrzynski G, Kabanov A. Block copolymeric biotransport carriers as versatile vehicles for drug delivery. Expert Opin Biol Ther. 2001;1:583–602.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work made use of University of Utah shared facilities of the Micron Technology Foundation Inc. Microscopy Suite sponsored by the College of Engineering, Health Sciences Center, Office of the Vice President for Research, and the Utah Science Technology and Research (USTAR) initiative of the State of Utah.

Funding

This work was funded by the University of Utah Clinical and Translational Science Institute Pilot award program. It was supported by the University of Utah Study Design and Biostatistics Center, with funding in part from the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002538. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Nitish Khurana, Till Suenner, Venkata Yellepeddi, Kevin Watt, Hamidreza Ghandehari; Methodology: Nitish Khurana, Till Suenner, Oliver Hubbard, Carina Imburgia; Formal analysis: Nitish Khurana, Till Suenner, Oliver Hubbard, Gregory Stoddard; Investigation: Nitish Khurana, Till Suenner, Oliver Hubbard, Carina Imburgia; Resources: Venkata Yellepeddi, Kevin Watt, Hamidreza Ghandehari; Writing – Original Draft: Nitish Khurana; Writing – Review and editing: Nitish Khurana, Till Suenner, Oliver Hubbard, Carina Imburgia, Venkata Yellepeddi, Kevin Watt, Hamidreza Ghandehari, Gregory Stoddard; Supervision: Nitish Khurana, Venkata Yellepeddi, Kevin Watt, Hamidreza Ghandehari; Funding acquisition: Nitish Khurana, Venkata Yellepeddi, Kevin Watt, Hamidreza Ghandehari.

Corresponding author

Correspondence to Hamidreza Ghandehari.

Ethics declarations

Conflict of Interest

The authors do not have any conflict of interest to report.

Additional information

Responsible Editor: Aliasger Salem

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 224 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, N., Sünner, T., Hubbard, O. et al. Micellar Encapsulation of Propofol Reduces its Adsorption on Extracorporeal Membrane Oxygenator (ECMO) Circuit. AAPS J 25, 52 (2023). https://doi.org/10.1208/s12248-023-00817-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00817-2

Key Words

Navigation