Skip to main content

Advertisement

Log in

Vinyl Sulfone-functionalized Acetalated Dextran Microparticles as a Subunit Broadly Acting Influenza Vaccine

  • Research Article
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Influenza is a global health concern with millions of infections occurring yearly. Seasonal flu vaccines are one way to combat this virus; however, they are poorly protective against influenza as the virus is constantly mutating, particularly at the immunodominant hemagglutinin (HA) head group. A more broadly acting approach involves Computationally Optimized Broadly Reactive Antigen (COBRA). COBRA HA generates a broad immune response that is capable of protecting against mutating strains. Unfortunately, protein-based vaccines are often weekly immunogenic, so to help boost the immune response, we employed the use of acetalated dextran (Ace-DEX) microparticles (MPs) two ways: one to conjugate COBRA HA to the surface and a second to encapsulate cGAMP. To conjugate the COBRA HA to the surface of the Ace-DEX MPs, a poly(L-lactide)-polyethylene glycol co-polymer with a vinyl sulfone terminal group (PLLA-PEG-VS) was used. MPs encapsulating the STING agonist cGAMP were co-delivered with the antigen to form a broadly active influenza vaccine. This vaccine approach was evaluated in vivo with a prime-boost-boost vaccination schedule and illustrated generation of a humoral and cellular response that could protect against a lethal challenge of A/California/07/2009 in BALB/c mice.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Potter CW. A history of influenza. J Appl Microbiol. 2001;91(4):572–9. https://doi.org/10.1046/j.1365-2672.2001.01492.x.

    Article  CAS  PubMed  Google Scholar 

  2. Akin L, Gozel MG. Understanding dynamics of pandemics. Turk J Med Sci. 2020;50(SI-1):515–9. https://doi.org/10.3906/sag-2004-133.

  3. Wilks S, de Graaf M, Smith DJ, Burke DF. A review of influenza haemagglutinin receptor binding as it relates to pandemic properties. Vaccine. 2012;30(29):4369–76. https://doi.org/10.1016/j.vaccine.2012.02.076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kim H, Webster RG, Webby RJ. Influenza virus: dealing with a drifting and shifting pathogen. Viral Immunol. 2018;31(2):174–83. https://doi.org/10.1089/vim.2017.0141.

    Article  CAS  PubMed  Google Scholar 

  5. Allen JD, Ray S, Ross TM. Split inactivated cobra vaccine elicits protective antibodies against h1n1 and h3n2 influenza viruses. PLoS ONE. 2018;13(9):e0204284. https://doi.org/10.1371/journal.pone.0204284.

  6. Allen JD, Ross TM. Bivalent H1 and H3 cobra recombinant hemagglutinin vaccines elicit seroprotective antibodies against H1n1 and H3n2 influenza viruses from 2009 to 2019. J Virol. 2022;96(7):e0165221. https://doi.org/10.1128/jvi.01652-21.

  7. Carter DM, Darby CA, Lefoley BC, Crevar CJ, Alefantis T, Oomen R, et al. Design and characterization of a computationally optimized broadly reactive hemagglutinin vaccine for H1n1 influenza viruses. J Virol. 2016;90(9):4720–34. https://doi.org/10.1128/jvi.03152-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crevar CJ, Carter DM, Lee KY, Ross TM. Cocktail of H5n1 cobra Ha vaccines elicit protective antibodies against H5n1 viruses from multiple clades. Hum Vaccin Immunother. 2015;11(3):572–83. https://doi.org/10.1080/21645515.2015.1012013.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Darricarrère N, Pougatcheva S, Duan X, Rudicell RS, Chou TH, DiNapoli J, et al. Development of a Pan-H1 influenza vaccine. J Virol. 2018;92(22). https://doi.org/10.1128/jvi.01349-18.

  10. Giles BM, Bissel SJ, Dealmeida DR, Wiley CA, Ross TM. Antibody breadth and protective efficacy are increased by vaccination with computationally optimized hemagglutinin but not with polyvalent hemagglutinin-based H5n1 virus-like particle vaccines. Clin Vaccine Immunol. 2012;19(2):128–39. https://doi.org/10.1128/CVI.05533-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Giles BM, Crevar CJ, Carter DM, Bissel SJ, Schultz-Cherry S, Wiley CA, et al. A computationally optimized hemagglutinin virus-like particle vaccine elicits broadly reactive antibodies that protect nonhuman primates from H5n1 infection. J Infect Dis. 2012;205(10):1562–70. https://doi.org/10.1093/infdis/jis232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sautto GA, Kirchenbaum GA, Abreu RB, Ecker JW, Pierce SR, Kleanthous H, et al. A computationally optimized broadly reactive antigen subtype-specific influenza vaccine strategy elicits unique potent broadly neutralizing antibodies against hemagglutinin. J Immunol. 2020;204(2):375–85. https://doi.org/10.4049/jimmunol.1900379.

    Article  CAS  PubMed  Google Scholar 

  13. Varma DM, Batty CJ, Stiepel RT, Graham-Gurysh EG, Roque JA 3rd, Pena ES, et al. Development of an intranasal gel for the delivery of a broadly acting subunit influenza vaccine. ACS Biomater Sci Eng. 2022;8(4):1573–82. https://doi.org/10.1021/acsbiomaterials.2c00015.

    Article  CAS  PubMed  Google Scholar 

  14. Wong TM, Allen JD, Bebin-Blackwell AG, Carter DM, Alefantis T, DiNapoli J, et al. Computationally optimized broadly reactive hemagglutinin elicits hemagglutination inhibition antibodies against a panel of H3n2 influenza virus cocirculating variants. J Virol. 2017;91(24). https://doi.org/10.1128/JVI.01581-17.

  15. Pulendran B, P SA, O'Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–75. https://doi.org/10.1038/s41573-021-00163-y.

  16. Genito CJ, Batty CJ, Bachelder EM, Ainslie KM. Considerations for size, surface charge, polymer degradation, co-delivery, and manufacturability in the development of polymeric particle vaccines for infectious diseases. Adv Nanobiomed Res. 2021;1(3):2000041. https://doi.org/10.1002/anbr.202000041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beaudette TT, Bachelder EM, Cohen JA, Obermeyer AC, Broaders KE, Frechet JM, et al. In vivo studies on the effect of co-encapsulation of Cpg DNA and antigen in acid-degradable microparticle vaccines. Mol Pharm. 2009;6(4):1160–9. https://doi.org/10.1021/mp900038e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on Plga particles. Hum Vaccin Immunother. 2016;12(3):806–28. https://doi.org/10.1080/21645515.2015.1102804.

    Article  PubMed  Google Scholar 

  19. Gu P, Wusiman A, Wang S, Zhang Y, Liu Z, Hu Y, et al. Polyethylenimine-coated Plga nanoparticles-encapsulated angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym. 2019;223:115128. https://doi.org/10.1016/j.carbpol.2019.115128.

  20. Bachelder EM, Beaudette TT, Broaders KE, Dashe J, Frechet JM. Acetal-derivatized dextran: an acid-responsive biodegradable material for therapeutic applications. J Am Chem Soc. 2008;130(32):10494–5. https://doi.org/10.1021/ja803947s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kauffman KJ, Do C, Sharma S, Gallovic MD, Bachelder EM, Ainslie KM. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS Appl Mater Interfaces. 2012;4(8):4149–55. https://doi.org/10.1021/am3008888.

    Article  CAS  PubMed  Google Scholar 

  22. Broaders KE, Cohen JA, Beaudette TT, Bachelder EM, Frechet JM. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy. Proc Natl Acad Sci U S A. 2009;106(14):5497–502. https://doi.org/10.1073/pnas.0901592106.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen N, Collier MA, Gallovic MD, Collins GC, Sanchez CC, Fernandes EQ, et al. Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight. Int J Pharm. 2016;512(1):147–57. https://doi.org/10.1016/j.ijpharm.2016.08.031.

    Article  CAS  PubMed  Google Scholar 

  24. Junkins RD, Gallovic MD, Johnson BM, Collier MA, Watkins-Schulz R, Cheng N, et al. A robust microparticle platform for a sting-targeted adjuvant that enhances both humoral and cellular immunity during vaccination. J Control Release. 2018;270:1–13. https://doi.org/10.1016/j.jconrel.2017.11.030.

    Article  CAS  PubMed  Google Scholar 

  25. Gallovic MD, Schully KL, Bell MG, Elberson MA, Palmer JR, Darko CA, et al. Acetalated dextran microparticulate vaccine formulated via coaxial electrospray preserves toxin neutralization and enhances murine survival following inhalational Bacillus anthracis exposure. Adv Healthc Mater. 2016;5(20):2617–27. https://doi.org/10.1002/adhm.201600642.

    Article  CAS  PubMed  Google Scholar 

  26. Chen N, Johnson MM, Collier MA, Gallovic MD, Bachelder EM, Ainslie KM. Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses. J Control Release. 2018;273:147–59. https://doi.org/10.1016/j.jconrel.2018.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh A, Eliciting B. Cell Immunity against infectious diseases using nanovaccines. Nat Nanotechnol. 2021;16(1):16–24. https://doi.org/10.1038/s41565-020-00790-3.

    Article  CAS  PubMed  Google Scholar 

  28. Kato Y, Abbott RK, Freeman BL, Haupt S, Groschel B, Silva M, et al. Multifaceted effects of antigen valency on B cell response composition and differentiation in vivo. Immunity. 2020;53(3):548-63.e8. https://doi.org/10.1016/j.immuni.2020.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pejawar-Gaddy S, Kovacs JM, Barouch DH, Chen B, Irvine DJ. Design of lipid nanocapsule delivery vehicles for multivalent display of recombinant Env trimers in Hiv vaccination. Bioconjug Chem. 2014;25(8):1470–8. https://doi.org/10.1021/bc5002246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gil-Ocana V, Jimenez IM, Mayorga C, Dona I, Cespedes JA, Montanez MI, et al. Multiepitope dendrimeric antigen-silica particle composites as nano-based platforms for specific recognition of Iges. Front Immunol. 2021;12:750109. https://doi.org/10.3389/fimmu.2021.750109.

  31. Morales-Sanfrutos J, Lopez-Jaramillo J, Ortega-Munoz M, Megia-Fernandez A, Perez-Balderas F, Hernandez-Mateo F, et al. Vinyl sulfone: a versatile function for simple bioconjugation and immobilization. Org Biomol Chem. 2010;8(3):667–75. https://doi.org/10.1039/b920576d.

    Article  CAS  PubMed  Google Scholar 

  32. Chen N, Collier MA, Gallovic MD, Collins GC, Sanchez CC, Fernandes EQ, et al. Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight. Int J Pharm. 2016;512(1):147–57. https://doi.org/10.1016/j.ijpharm.2016.08.031.

    Article  CAS  PubMed  Google Scholar 

  33. Chen N, Gallovic MD, Tiet P, Ting JP, Ainslie KM, Bachelder EM. Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy. J Control Release. 2018;289:114–24. https://doi.org/10.1016/j.jconrel.2018.09.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang Y, Franca MS, Allen JD, Shi H, Ross TM. Next generation of computationally optimized broadly reactive Ha vaccines elicited cross-reactive immune responses and provided protection against H1n1 virus infection. Vaccines (Basel). 2021;9(7). https://doi.org/10.3390/vaccines9070793.

  35. Ecker JW, Kirchenbaum GA, Pierce SR, Skarlupka AL, Abreu RB, Cooper RE, et al. High-yield expression and purification of recombinant influenza virus proteins from stably-transfected mammalian cell lines. Vaccines (Basel). 2020;8(3). https://doi.org/10.3390/vaccines8030462.

  36. Watkins-Schulz R, Tiet P, Gallovic MD, Junkins RD, Batty C, Bachelder EM, et al. A microparticle platform for sting-targeted immunotherapy enhances natural killer cell- and Cd8(+) T cell-mediated anti-tumor immunity. Biomaterials. 2019;205:94–105. https://doi.org/10.1016/j.biomaterials.2019.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eckshtain-Levi M, Batty CJ, Lifshits LM, McCammitt B, Moore KM, Amouzougan EA, et al. Metal-organic coordination polymer for delivery of a subunit broadly acting influenza vaccine. ACS Appl Mater Interfaces. 2022;14(25):28548–58. https://doi.org/10.1021/acsami.2c04671.

    Article  CAS  PubMed  Google Scholar 

  38. Earnest JT, Basore K, Roy V, Bailey AL, Wang D, Alter G, et al. Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. J Exp Med. 2019;216(10):2282–301. https://doi.org/10.1084/jem.20190736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Butler AL, Fallon JK, Alter G. A sample-sparing multiplexed Adcp assay. Front Immunol. 2019;10:1851. https://doi.org/10.3389/fimmu.2019.01851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boudreau CM, Yu WH, Suscovich TJ, Talbot HK, Edwards KM, Alter G. Selective induction of antibody effector functional responses using Mf59-adjuvanted vaccination. J Clin Invest. 2020;130(2):662–72. https://doi.org/10.1172/JCI129520.

    Article  CAS  PubMed  Google Scholar 

  41. Zelek WM, Harris CL, Morgan BP. Extracting the barbs from complement assays: identification and optimisation of a safe substitute for traditional buffers. Immunobiology. 2018;223(12):744–9. https://doi.org/10.1016/j.imbio.2018.07.016.

    Article  CAS  PubMed  Google Scholar 

  42. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. 2018;9:2224. https://doi.org/10.3389/fimmu.2018.02224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Batty CJ, Gallovic MD, Williams J, Ross TM, Bachelder EM, Ainslie KM. Multiplexed electrospray enables high throughput production of cGAMP microparticles to serve as an adjuvant for a broadly acting influenza vaccine. Int J Pharm. 2022;622:121839. https://doi.org/10.1016/j.ijpharm.2022.121839.

  44. Gallovic MD, Junkins RD, Sandor AM, Pena ES, Sample CJ, Mason AK, et al. Sting agonist-containing microparticles improve seasonal influenza vaccine efficacy and durability in ferrets over standard adjuvant. J Control Release. 2022;347:356–68. https://doi.org/10.1016/j.jconrel.2022.05.017.

    Article  CAS  PubMed  Google Scholar 

  45. Gallovic MD, Schully KL, Bell MG, Elberson MA, Palmer JR, Darko CA, et al. Acetalated dextran microparticulate vaccine formulated via coaxial electrospray preserves toxin neutralization and enhances murine survival following inhalational Bacillus anthracis exposure. Adv Healthc Mater. 2016. https://doi.org/10.1002/adhm.201600642.

    Article  PubMed  Google Scholar 

  46. Ko EJ, Kang SM. Immunology and efficacy of Mf59-adjuvanted vaccines. Hum Vaccin Immunother. 2018;14(12):3041–5. https://doi.org/10.1080/21645515.2018.1495301.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miyauchi K, Sugimoto-Ishige A, Harada Y, Adachi Y, Usami Y, Kaji T, et al. Protective neutralizing influenza antibody response in the absence of T follicular helper cells. Nat Immunol. 2016;17(12):1447–58. https://doi.org/10.1038/ni.3563.

    Article  CAS  PubMed  Google Scholar 

  48. Huber VC, McKeon RM, Brackin MN, Miller LA, Keating R, Brown SA, et al. Distinct contributions of vaccine-induced immunoglobulin G1 (Igg1) and Igg2a antibodies to protective immunity against influenza. Clin Vaccine Immunol. 2006;13(9):981–90. https://doi.org/10.1128/CVI.00156-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol. 2018;18(1):46–61. https://doi.org/10.1038/nri.2017.106.

    Article  CAS  PubMed  Google Scholar 

  50. Vanderven HA, Kent SJ. The protective potential of Fc-mediated antibody functions against influenza virus and other viral pathogens. Immunol Cell Biol. 2020;98(4):253–63. https://doi.org/10.1111/imcb.12312.

    Article  CAS  PubMed  Google Scholar 

  51. Vafa O, Gilliland GL, Brezski RJ, Strake B, Wilkinson T, Lacy ER, et al. An engineered Fc variant of an igg eliminates all immune effector functions Via structural perturbations. Methods. 2014;65(1):114–26. https://doi.org/10.1016/j.ymeth.2013.06.035.

    Article  CAS  PubMed  Google Scholar 

  52. Lee NK, Wang CJ, Lim J, Park W, Kwon HK, Kim SN, et al. Impact of the conjugation of antibodies to the surfaces of polymer nanoparticles on the immune cell targeting abilities. Nano Converg. 2021;8(1):24. https://doi.org/10.1186/s40580-021-00274-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, van Asdonk K, Zijlstra P. A robust and general approach to quantitatively conjugate enzymes to plasmonic nanoparticles. Langmuir. 2019;35(41):13356–63. https://doi.org/10.1021/acs.langmuir.9b01879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McCarthy DP, Hunter ZN, Chackerian B, Shea LD, Miller SD. Targeted immunomodulation using antigen-conjugated nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6(3):298–315. https://doi.org/10.1002/wnan.1263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alam F, Singh A, Flores-Malavet V, Sell S, Cooper AM, Swain SL, et al. Cd25-Targeted Il-2 signals promote improved outcomes of influenza infection and boost memory Cd4 T cell formation. J Immunol. 2020;204(12):3307–14. https://doi.org/10.4049/jimmunol.2000205.

    Article  CAS  PubMed  Google Scholar 

  56. Bot A, Bot S, Bona CA. Protective role of gamma interferon during the recall response to influenza virus. J Virol. 1998;72(8):6637–45. https://doi.org/10.1128/JVI.72.8.6637-6645.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hanson MC, Bershteyn A, Crespo MP, Irvine DJ. Antigen delivery by lipid-enveloped PLGA microparticle vaccines mediated by in situ vesicle shedding. Biomacromol. 2014;15(7):2475–81. https://doi.org/10.1021/bm500337r.

    Article  CAS  Google Scholar 

  58. Sia ZR, He X, Zhang A, Ang JC, Shao S, Seffouh A, et al. A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge. Proc Natl Acad Sci U S A. 2021;118(22). https://doi.org/10.1073/pnas.2025759118.

Download references

Acknowledgements

Abstract figure and Fig. 1b were in part created with BioRender.com. This work was performed in part at the Chapel Hill Analytical and Nanofabrication Laboratory, CHANL, a member of the North Carolina Research Triangle Nanotechnology Network, RTNN, which is supported by the National Science Foundation, Grant ECCS-2025064, as part of the National Nanotechnology Coordinated Infrastructure, NNCI. We thank Dr. Amar S. Kumbhar of CHANL for his assistance with SEM characterization.

Funding

Funding for this work was supported by National Institutes of Health (NIH) NIAID Collaborative Influenza Vaccine Innovation Centers (CIVICs) Contract #75N93019C00052 (PI: Ross) and NIH R01AI147497 (PI: Ainslie). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Kristy M. Ainslie (principal investigator) and Eric M. Bachelder (co-principal investigator) designed the experiments and wrote the first draft of manuscript. Cole J. Batty and Liubov M. Lifshits contributed to writing of manuscript, and other co-authors provided minor edits. Cole J. Batty and Liubov M. Lifshits prepared figures for the manuscript. Ted M. Ross (co-principal investigator) provided COBRA HA for the experiments. Michael A. Carlock conducted HAI experiment. Liubov M. Lifshits, Dylan H. Hendy, and Meital Eckshtain-Levi carried out synthesis and characterization of materials. Cole J. Batty, Dylan A. Hendy, and Luis Ontiveros-Padilla carried out in vivo experiments. Dylan H. Hendy revised the manuscript in response to reviewer’s comments.

Corresponding author

Correspondence to Kristy M. Ainslie.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batty, C.J., Lifshits, L.M., Hendy, D.A. et al. Vinyl Sulfone-functionalized Acetalated Dextran Microparticles as a Subunit Broadly Acting Influenza Vaccine. AAPS J 25, 22 (2023). https://doi.org/10.1208/s12248-023-00786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00786-6

Keywords

Navigation