Skip to main content

Advertisement

Log in

Does Food Affect the Pharmacokinetics of Non-orally Delivered Drugs? A Review of Currently Available Evidence

  • Review Article
  • Theme: Use of PBPK Modeling to Inform Clinical Decisions: Current Status of Prediction of Drug-Food Interactions
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The food effects for orally administered drugs have been widely investigated and reviewed. In contrast, our knowledge of food effects for non-orally administered drugs is scarce. In this review paper, we did a literature survey to collect clinical food effect data for non-orally administered drugs. Our survey retrieved 18 drugs, including thirteen intravenously (IV), two subcutaneously (SC), one intradermally (ID), one pulmonary, and one rectally administered drug. The food effect data show that food intake can increase the absorption of SC and ID administered peptides and proteins with MW < 30 kDa by 30–50%. On the other hand, food intake can increase the elimination of IV and inhaled drugs with moderate and high hepatic extraction and reduce drug exposure by up to 35%. The food effect knowledge can be used to mitigate potential efficacy and safety risks of non-orally administered drugs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singh BN. Effects of food on clinical pharmacokinetics. Clin Pharmacokinet. 1999;37(3):213–55. https://doi.org/10.2165/00003088-199937030-00003.

    Article  CAS  PubMed  Google Scholar 

  2. Xiao J, Tran D, Zhang X, Zhang T, Seo S, Zhu H, et al. Biliary excretion-mediated food effects and prediction. AAPS J. 2020;22(6):124. https://doi.org/10.1208/s12248-020-00509-1.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang T, Zou P. Assessing food effects on oral drug absorption based on the degree of renal excretion. AAPS J. 2021;23(3):47. https://doi.org/10.1208/s12248-021-00570-4.

    Article  CAS  PubMed  Google Scholar 

  4. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic food-drug interactions - a perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59. https://doi.org/10.1016/j.ejps.2019.04.003.

    Article  CAS  PubMed  Google Scholar 

  5. Lew SW, Bosch JP. Effect of diet on creatinine clearance and excretion in young and elderly healthy subjects and in patients with renal disease. J Am Soc Nephrol. 1991;2(4):856–65. https://doi.org/10.1681/ASN.V24856.

    Article  CAS  PubMed  Google Scholar 

  6. Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis. 2002;40(2):265–74. https://doi.org/10.1053/ajkd.2002.34504.

    Article  CAS  PubMed  Google Scholar 

  7. Deng J, Zhu X, Chen Z, Fan CH, Kwan HS, Wong CH, et al. A review of food-drug interactions on oral drug absorption. Drugs. 2017;77(17):1833–55. https://doi.org/10.1007/s40265-017-0832-z.

    Article  CAS  PubMed  Google Scholar 

  8. McQuaid SE, Humphreys SM, Hodson L, Fielding BA, Karpe F, Frayn KN. Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes. 2010;59(10):2465–73. https://doi.org/10.2337/db10-0678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sotornik R, Brassard P, Martin E, Yale P, Carpentier AC, Ardilouze JL. Update on adipose tissue blood flow regulation. Am J Physiol Endocrinol Metab. 2012;302(10):E1157–70. https://doi.org/10.1152/ajpendo.00351.2011.

    Article  CAS  PubMed  Google Scholar 

  10. Gradel AKJ, Kildegaard J, Porsgaard T, Lykkesfeldt J, Refsgaard HHF. Food intake rather than blood glucose levels affects the pharmacokinetic profile of insulin aspart in pigs. Basic Clin Pharmacol Toxicol. 2021;128(6):783–94. https://doi.org/10.1111/bcpt.13574.

    Article  CAS  PubMed  Google Scholar 

  11. Zou P, Wang F, Wang J, Lu Y, Tran D, Seo SK. Impact of injection sites on clinical pharmacokinetics of subcutaneously administered peptides and proteins. J Control Release. 2021;336:310–21. https://doi.org/10.1016/j.jconrel.2021.06.038.

    Article  CAS  PubMed  Google Scholar 

  12. ter Braak EW, Woodworth JR, Bianchi R, Cerimele B, Erkelens DW, Thijssen JH, et al. Injection site effects on the pharmacokinetics and glucodynamics of insulin lispro and regular insulin. Diabetes Care. 1996;19(12):1437–40. https://doi.org/10.2337/diacare.19.12.1437.

    Article  PubMed  Google Scholar 

  13. Hovelmann U, Heise T, Nosek L, Sassenfeld B, Thomsen KMD, Haahr H. Pharmacokinetic properties of fast-acting insulin aspart administered in different subcutaneous injection regions. Clin Drug Investig. 2017;37(5):503–9. https://doi.org/10.1007/s40261-017-0499-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Calara F, Taylor K, Han J, Zabala E, Carr EM, Wintle M, et al. A randomized, open-label, crossover study examining the effect of injection site on bioavailability of exenatide (synthetic exendin-4). Clin Ther. 2005;27(2):210–5. https://doi.org/10.1016/j.clinthera.2005.02.008.

    Article  CAS  PubMed  Google Scholar 

  15. Mudaliar SR, Lindberg FA, Joyce M, Beerdsen P, Strange P, Lin A, et al. Insulin aspart (B28 asp-insulin): a fast-acting analog of human insulin: absorption kinetics and action profile compared with regular human insulin in healthy nondiabetic subjects. Diabetes Care. 1999;22(9):1501–6. https://doi.org/10.2337/diacare.22.9.1501.

    Article  CAS  PubMed  Google Scholar 

  16. Kochba E, Levin Y, Raz I, Cahn A. Improved insulin pharmacokinetics using a novel microneedle device for intradermal delivery in patients with type 2 diabetes. Diabetes Technol Ther. 2016;18(9):525–31. https://doi.org/10.1089/dia.2016.0156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chan JL, Wong SL, Mantzoros CS. Pharmacokinetics of subcutaneous recombinant methionyl human leptin administration in healthy subjects in the fed and fasting states: regulation by gender and adiposity. Clin Pharmacokinet. 2008;47(11):753–64. https://doi.org/10.2165/00003088-200847110-00006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Romon M, Lebel P, Velly C, Marecaux N, Fruchart JC, Dallongeville J. Leptin response to carbohydrate or fat meal and association with subsequent satiety and energy intake. Am J Physiol. 1999;277(5):E855–61. https://doi.org/10.1152/ajpendo.1999.277.5.E855.

    Article  CAS  PubMed  Google Scholar 

  19. McLennan DN, Porter CJ, Charman SA. Subcutaneous drug delivery and the role of the lymphatics. Drug Discov Today Technol. 2005;2(1):89–96. https://doi.org/10.1016/j.ddtec.2005.05.006.

    Article  CAS  PubMed  Google Scholar 

  20. Miller NE, Michel CC, Nanjee MN, Olszewski WL, Miller IP, Hazell M, et al. Secretion of adipokines by human adipose tissue in vivo: partitioning between capillary and lymphatic transport. Am J Physiol Endocrinol Metab. 2011;301(4):E659–67. https://doi.org/10.1152/ajpendo.00058.2011.

    Article  CAS  PubMed  Google Scholar 

  21. Svensson CK, Edwards DJ, Mauriello PM, Barde SH, Foster AC, Lanc RA, et al. Effect of food on hepatic blood flow: implications in the “food effect” phenomenon. Clin Pharmacol Ther. 1983;34(3):316–23. https://doi.org/10.1038/clpt.1983.174.

    Article  CAS  PubMed  Google Scholar 

  22. Mithani SD, Bakatselou V, TenHoor CN, Dressman JB. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 1996;13(1):163–7. https://doi.org/10.1023/a:1016062224568.

    Article  CAS  PubMed  Google Scholar 

  23. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res. 2006;23(1):165–76. https://doi.org/10.1007/s11095-005-8476-1.

    Article  CAS  PubMed  Google Scholar 

  24. Feely J, Nadeau J, Wood AJ. Effects of feeding on the systemic clearance of indocyanine green and propranolol blood concentrations and plasma binding. Br J Clin Pharmacol. 1983;15(3):383–5. https://doi.org/10.1111/j.1365-2125.1983.tb01516.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Elvin AT, Cole AF, Pieper JA, Rolbin SH, Lalka D. Effect of food on lidocaine kinetics: mechanism of food-related alteration in high intrinsic clearance drug elimination. Clin Pharmacol Ther. 1981;30(4):455–60. https://doi.org/10.1038/clpt.1981.188.

    Article  CAS  PubMed  Google Scholar 

  26. Daneshmend TK, Roberts CJ. The influence of food on the oral and intravenous pharmacokinetics of a high clearance drug: a study with labetalol. Br J Clin Pharmacol. 1982;14(1):73–8. https://doi.org/10.1111/j.1365-2125.1982.tb04936.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Griensven JM, Huisman LG, Stuurman T, Dooijewaard G, Kroon R, Schoemaker RC, et al. Effects of increased liver blood flow on the kinetics and dynamics of recombinant tissue-type plasminogen activator. Clin Pharmacol Ther. 1996;60(5):504–11. https://doi.org/10.1016/S0009-9236(96)90146-0.

    Article  PubMed  Google Scholar 

  28. Marigold JH, Gilmore IT, Thompson RP. Effects of a meal on plasma clearance of [14C]glycocholic acid and indocyanine green in man. Clin Sci (Lond). 1981;61(3):325–30. https://doi.org/10.1042/cs0610325.

    Article  CAS  Google Scholar 

  29. Hoyumpa AM, Patwardhan R, Maples M, Desmond PV, Johnson RF, Sinclair AP, et al. Effect of short-term ethanol administration on lorazepam clearance. Hepatology. 1981;1(1):47–53. https://doi.org/10.1002/hep.1840010108.

    Article  CAS  PubMed  Google Scholar 

  30. Herman RJ, Chaudhary A, Szakacs CB. Disposition of lorazepam in Gilbert’s syndrome: effects of fasting, feeding, and enterohepatic circulation. J Clin Pharmacol. 1994;34(10):978–84. https://doi.org/10.1002/j.1552-4604.1994.tb01969.x.

    Article  CAS  PubMed  Google Scholar 

  31. Ramchandani VA, Kwo PY, Li TK. Effect of food and food composition on alcohol elimination rates in healthy men and women. J Clin Pharmacol. 2001;41(12):1345–50. https://doi.org/10.1177/00912700122012814.

    Article  CAS  PubMed  Google Scholar 

  32. Chandler WL, Alessi MC, Aillaud MF, Henderson P, Vague P, Juhan-Vague I. Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels. Circulation. 1997;96(3):761–8. https://doi.org/10.1161/01.cir.96.3.761.

    Article  CAS  PubMed  Google Scholar 

  33. Seidegard J, Nyberg L, Borga O. Differentiating mucosal and hepatic metabolism of budesonide by local pretreatment with increasing doses of ketoconazole in the proximal jejunum. Eur J Pharm Sci. 2012;46(5):530–6. https://doi.org/10.1016/j.ejps.2012.04.005.

    Article  CAS  PubMed  Google Scholar 

  34. Lundin P, Naber T, Nilsson M, Edsbacker S. Effect of food on the pharmacokinetics of budesonide controlled ileal release capsules in patients with active Crohn’s disease. Aliment Pharmacol Ther. 2001;15(1):45–51. https://doi.org/10.1046/j.1365-2036.2001.00910.x.

    Article  CAS  PubMed  Google Scholar 

  35. Gupta SK, Manfro RC, Tomlanovich SJ, Gambertoglio JG, Garovoy MR, Benet LZ. Effect of food on the pharmacokinetics of cyclosporine in healthy subjects following oral and intravenous administration. J Clin Pharmacol. 1990;30(7):643–53. https://doi.org/10.1002/j.1552-4604.1990.tb01868.x.

    Article  CAS  PubMed  Google Scholar 

  36. Nicolas LB, Krause A, Gutierrez MM, Dingemanse J. Integrated pharmacokinetics and pharmacodynamics of epoprostenol in healthy subjects. Br J Clin Pharmacol. 2012;74(6):978–89. https://doi.org/10.1111/j.1365-2125.2012.04301.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Vries R, Smit JW, Hellemans P, Jiao J, Murphy J, Skee D, et al. Stable isotope-labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults. Br J Clin Pharmacol. 2016;81(2):235–45. https://doi.org/10.1111/bcp.12787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cole AF, Baxter JG, Jackson BJ, Hew-Wing P, Guntert TW, Lalka D. Pharmacokinetic and metabolic aspects of the moclobemide-food interaction. Psychopharmacology. 1992;106(Suppl):S37–9. https://doi.org/10.1007/BF02246232.

    Article  CAS  PubMed  Google Scholar 

  39. Ndovi TT, Cao YJ, Fuchs E, Fletcher CV, Guidos A, Hendrix CW. Food affects Zidovudine concentration independent of effects on gastrointestinal absorption. J Clin Pharmacol. 2007;47(11):1366–73. https://doi.org/10.1177/0091270007306562.

    Article  CAS  PubMed  Google Scholar 

  40. Shah B, Jensen BK, Zhang J, Hunt T, Rohatagi S. Effect of food on pharmacokinetics of an inhaled drug: a case study with a VLA-4 antagonist, HMR1031. J Clin Pharmacol. 2003;43(12):1341–9. https://doi.org/10.1177/0091270003258172.

    Article  CAS  PubMed  Google Scholar 

  41. FDA. Assessing the effects of food on drugs in INDs and NDAs — clinical pharmacology considerations. https://www.fda.gov/media/121313/download2019.

  42. Man WD, Luo YM, Mustfa N, Rafferty GF, Glerant JC, Polkey MI, et al. Postprandial effects on twitch transdiaphragmatic pressure. Eur Respir J. 2002;20(3):577–80. https://doi.org/10.1183/09031936.02.00302702.

    Article  CAS  PubMed  Google Scholar 

  43. Garnett WR, Barr WH, Edinboro LE, Karnes HT, Mesa M, Wannarka GL. Diazepam autoinjector intramuscular delivery system versus diazepam rectal gel: a pharmacokinetic comparison. Epilepsy Res. 2011;93(1):11–6. https://doi.org/10.1016/j.eplepsyres.2010.10.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the manuscript, commented on previous versions, read, and approved the final manuscript.

Corresponding author

Correspondence to Peng Zou.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Disclaimer

The author is an employee of Daiichi Sankyo, Inc. The opinions expressed in this article are those of the author and should not be interpreted as the position of the Daiichi Sankyo, Inc.

Additional information

Guest Editor: Filippos Kesisoglou

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, P. Does Food Affect the Pharmacokinetics of Non-orally Delivered Drugs? A Review of Currently Available Evidence. AAPS J 24, 59 (2022). https://doi.org/10.1208/s12248-022-00714-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00714-0

KEY WORDS

Navigation