Skip to main content

Advertisement

Log in

Nanotechnology-Driven Cell-Based Therapies in Regenerative Medicine

  • Mini-Review
  • Theme: Rising Stars in Drug Delivery and Novel Carriers
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The administration of cells as therapeutic agents has emerged as a novel approach to complement the use of small molecule drugs and other biologics for the treatment of numerous conditions. Although the use of cells for structural and/or functional tissue repair and regeneration provides new avenues to address increasingly complex disease processes, it also faces numerous challenges related to efficacy, safety, and translational potential. Recent advances in nanotechnology-driven cell therapies have the potential to overcome many of these issues through precise modulation of cellular behavior. Here, we describe several approaches that illustrate the use of different nanotechnologies for the optimization of cell therapies and discuss some of the obstacles that need to be overcome to allow for the widespread implementation of nanotechnology-based cell therapies in regenerative medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang M-L. The modern pharmaceutical industry: history, current position and challenges. Global Health Partnerships: The Pharmaceutical Industry and BRICA. London: Palgrave Macmillan UK; 2009. p. 33-80.

  2. Mason C, Brindley DA, Culme-Seymour EJ, Davie NL. Cell therapy industry: billion dollar global business with unlimited potential. Regen Med. 2011;6(3):265–72.

    Article  PubMed  Google Scholar 

  3. Fischbach MA, Bluestone JA, Lim WA. Cell-based therapeutics: the next pillar of medicine. Sci Transl Med. 2013;5(179):179ps7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Au P, Hursh DA, Lim A, Moos MC Jr, Oh SS, Schneider BS, et al. FDA oversight of cell therapy clinical trials. Sci Transl Med. 2012;4(149):149fs31.

    Article  PubMed  Google Scholar 

  5. Towards advanced cell therapies. Nature Biomedical Engineering. 2018;2(6):339-40.

  6. Science N. TC. National nanotechnology initiative, research and development leading to a revolution in technology and industry. A supplement to the President’s FY 2006 budget. 2005.

  7. Heath JR. Nanotechnologies for biomedical science and translational medicine. Proc Natl Acad Sci U S A. 2015;112(47):14436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1680):20150017.

    Article  Google Scholar 

  9. Sanchez A, Schimmang T, Garcia-Sancho J. Cell and tissue therapy in regenerative medicine. Adv Exp Med Biol. 2012;741:89–102.

    Article  CAS  PubMed  Google Scholar 

  10. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27(4):523–31.

    Article  CAS  PubMed  Google Scholar 

  11. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39(1):228–40.

    Article  CAS  PubMed  Google Scholar 

  12. Jing G, Li K, Sun F, Niu J, Zhu R, Qian Y, et al. Layer-number-dependent effects of graphene oxide on the pluripotency of mouse embryonic stem cells through the regulation of the interaction between the extracellular matrix and integrins. Int J Nanomedicine. 2021;16:3819–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang D, Li T, Xu M, Gao F, Yang J, Yang Z, et al. Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine (London). 2014;9(16):2445–55.

    Article  CAS  Google Scholar 

  14. Garcia-Alegria E, Iliut M, Stefanska M, Silva C, Heeg S, Kimber SJ, et al. Graphene oxide promotes embryonic stem cell differentiation to haematopoietic lineage. Sci Rep. 2016;6:25917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, et al. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011;23(36):H263–7.

    Article  CAS  PubMed  Google Scholar 

  16. Galipeau J, Sensebe L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018;22(6):824–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Halim A, Luo Q, Ju Y, Song G. A mini review focused on the recent applications of graphene oxide in stem cell growth and differentiation. Nanomaterials (Basel). 2018;8(9).

  18. Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5(6):4670–8.

    Article  CAS  PubMed  Google Scholar 

  19. Lee WC, Lim CH, Shi H, Tang LA, Wang Y, Lim CT, et al. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011;5(9):7334–41.

    Article  CAS  PubMed  Google Scholar 

  20. Lee WC, Lim CH. Kenry, Su C, Loh KP, Lim CT. Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small. 2015;11(8):963–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kim J, Park S, Kim YJ, Jeon CS, Lim KT, Seonwoo H, et al. Monolayer graphene-directed growth and neuronal differentiation of mesenchymal stem cells. J Biomed Nanotechnol. 2015;11(11):2024–33.

    Article  CAS  PubMed  Google Scholar 

  22. Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, et al. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale. 2016;8(4):1897–904.

    Article  CAS  PubMed  Google Scholar 

  23. Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol. 2017;18(12):728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kenry LCT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1–17.

    Article  CAS  Google Scholar 

  25. Bagher Z, Azami M, Ebrahimi-Barough S, Mirzadeh H, Solouk A, Soleimani M, et al. Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol Neurobiol. 2016;53(4):2397–408.

    Article  CAS  PubMed  Google Scholar 

  26. Sankar D, Mony U, Rangasamy J. Combinatorial effect of plasma treatment, fiber alignment and fiber scale of poly (epsilon-caprolactone)/collagen multiscale fibers in inducing tenogenesis in non-tenogenic media. Mater Sci Eng C Mater Biol Appl. 2021;127:112206.

    Article  CAS  PubMed  Google Scholar 

  27. Sridharan D, Palaniappan A, Blackstone BN, Dougherty JA, Kumar N, Seshagiri PB, et al. In situ differentiation of human-induced pluripotent stem cells into functional cardiomyocytes on a coaxial PCL-gelatin nanofibrous scaffold. Mater Sci Eng C Mater Biol Appl. 2021;118:111354.

    Article  CAS  PubMed  Google Scholar 

  28. Jeon BM, Yeon GB, Goo HG, Lee KE, Kim DS. PVDF nanofiber scaffold coated with a vitronectin peptide facilitates the neural differentiation of human embryonic stem cells. Dev Reprod. 2020;24(2):135–47.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abazari MF, Zare Karizi S, Hajati-Birgani N, Norouzi S, Khazeni Z, Hashemi J, et al. PHBV nanofibers promotes insulin-producing cells differentiation of human induced pluripotent stem cells. Gene. 2021;768:145333.

    Article  CAS  PubMed  Google Scholar 

  30. Cui H, Cheetham AG, Pashuck ET, Stupp SI. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J Am Chem Soc. 2014;136(35):12461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sleep E, Cosgrove BD, McClendon MT, Preslar AT, Chen CH, Sangji MH, et al. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation. Proc Natl Acad Sci. 2017;114(38):E7919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berns EJ, Sur S, Pan L, Goldberger JE, Suresh S, Zhang S, et al. Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials. 2014;35(1):185–95.

    Article  CAS  PubMed  Google Scholar 

  33. Park SJ, Kim S, Kim SY, Jeon NL, Song JM, Won C, et al. Highly efficient and rapid neural differentiation of mouse embryonic stem cells based on retinoic acid encapsulated porous nanoparticle. ACS Appl Mater Interfaces. 2017;9(40):34634–40.

    Article  CAS  PubMed  Google Scholar 

  34. Seo HI, Cho AN, Jang J, Kim DW, Cho SW, Chung BG. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomedicine. 2015;11(7):1861–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yamoah MA, Moshref M, Sharma J, Chen WC, Ledford HA, Lee JH, et al. Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles. Int J Nanomedicine. 2018;13:6073–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Tzeng SY, Liu X, Tammia M, Cheng YH, Rolfe A, et al. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain. Biomaterials. 2016;84:157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Saraiva C, Paiva J, Santos T, Ferreira L, Bernardino L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson's disease. J Control Release. 2016;235:291–305.

    Article  CAS  PubMed  Google Scholar 

  38. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645–60.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci. 2009;12(4):399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang R, Li Y, Hu B, Lu Z, Zhang J, Zhang X. Traceable nanoparticle delivery of small interfering RNA and retinoic acid with temporally release ability to control neural stem cell differentiation for Alzheimer’s disease therapy. Adv Mater. 2016;28(30):6345–52.

    Article  CAS  PubMed  Google Scholar 

  41. Karimi S, Bagher Z, Najmoddin N, Simorgh S, Pezeshki-Modaress M. Alginate-magnetic short nanofibers 3D composite hydrogel enhances the encapsulated human olfactory mucosa stem cells bioactivity for potential nerve regeneration application. Int J Biol Macromol. 2021;167:796–806.

    Article  CAS  PubMed  Google Scholar 

  42. Orza A, Soritau O, Olenic L, Diudea M, Florea A, Rus Ciuca D, et al. Electrically conductive gold-coated collagen nanofibers for placental-derived mesenchymal stem cells enhanced differentiation and proliferation. ACS Nano. 2011;5(6):4490–503.

    Article  CAS  PubMed  Google Scholar 

  43. Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int J Pharm. 2021;604:120733.

    Article  CAS  PubMed  Google Scholar 

  44. Webber MJ, Tongers J, Newcomb CJ, Marquardt K-T, Bauersachs J, Losordo DW, et al. Supramolecular nanostructures that mimic VEGF as a strategy for ischemic tissue repair. Proc Natl Acad Sci. 2011;108(33):13438–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Usmani S, Franceschi Biagioni A, Medelin M, Scaini D, Casani R, Aurand ER, et al. Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds. Proc Natl Acad Sci U S A. 2020;117(41):25212–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu X, He L, Li W, Li H, Wong WM, Ramakrishna S, et al. Functional self-assembling peptide nanofiber hydrogel for peripheral nerve regeneration. Regen Biomater. 2017;4(1):21–30.

    Article  CAS  PubMed  Google Scholar 

  47. Yang R, Yan Y, Wu Z, Wei Y, Song H, Zhu L, et al. Resveratrol-loaded titania nanotube coatings promote osteogenesis and inhibit inflammation through reducing the reactive oxygen species production via regulation of NF-κB signaling pathway. Mater Sci Eng C Mater Biol Appl. 2021;131:112513.

    Article  CAS  PubMed  Google Scholar 

  48. Uyanik O, Pekkoc-Uyanik KC, Findik S, Avci A, Altuntas Z. Prevention of peritendinous adhesions with electrospun poly (lactic acid-co-glycolic acid) (PLGA) bioabsorbable nanofiber: An experimental study. Colloids Surf B: Biointerfaces. 2022;209(Pt 2):112181.

    Article  CAS  PubMed  Google Scholar 

  49. Kim JE, Lee J, Jang M, Kwak MH, Go J, Kho EK, et al. Accelerated healing of cutaneous wounds using phytochemically stabilized gold nanoparticle deposited hydrocolloid membranes. Biomater Sci. 2015;3(3):509–19.

    Article  CAS  PubMed  Google Scholar 

  50. McCauley MD, Vitale F, Yan JS, Young CC, Greet B, Orecchioni M, et al. In vivo restoration of myocardial conduction with carbon nanotube fibers. Circ Arrhythm Electrophysiol. 2019;12(8):e007256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He Y, Ye G, Song C, Li C, Xiong W, Yu L, et al. Mussel-inspired conductive nanofibrous membranes repair myocardial infarction by enhancing cardiac function and revascularization. Theranostics. 2018;8(18):5159–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Doshi N, Swiston AJ, Gilbert JB, Alcaraz ML, Cohen RE, Rubner MF, et al. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv Mater. 2011;23(12):H105–H9.

    Article  CAS  PubMed  Google Scholar 

  53. Klyachko NL, Polak R, Haney MJ, Zhao Y, Gomes Neto RJ, Hill MC, et al. Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials. 2017;140:79–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhao Y, Haney MJ, Mahajan V, Reiner BC, Dunaevsky A, Mosley RL, et al. Active targeted macrophage-mediated delivery of catalase to affected brain regions in models of Parkinson’s disease. J Nanomed Nanotechnol. 2011;S4.

  55. Kumar A, Glaum M, El-Badri N, Mohapatra S, Haller E, Park S, et al. Initial observations of cell-mediated drug delivery to the deep lung. Cell Transplant. 2011;20(5):609–18.

    Article  PubMed  Google Scholar 

  56. Duarte-Sanmiguel S, Panic A, Dodd DJ, Salazar-Puerta A, Moore JT, Lawrence WR, et al. In situ deployment of engineered extracellular vesicles into the tumor niche via myeloid-derived suppressor cells. Adv Healthc Mater. 2021:e2101619.

  57. Wang H, Yang Y, Liu J, Qian L. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021;22(6):410–24.

    Article  PubMed  Google Scholar 

  58. Vierbuchen T, Wernig M. Direct lineage conversions: unnatural but useful? Nat Biotechnol. 2011;29(10):892–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ben-David U, Benvenisty N. The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer. 2011;11(4):268–77.

    Article  CAS  PubMed  Google Scholar 

  60. Evans CW, Fitzgerald M, Clemons TD, House MJ, Padman BS, Shaw JA, et al. Multimodal analysis of PEI-mediated endocytosis of nanoparticles in neural cells. ACS Nano. 2011;5(11):8640–8.

    Article  PubMed  Google Scholar 

  61. Wang M, Yu J, Cai L, Yang X. Direct reprogramming of mouse fibroblasts into hepatocyte-like cells by polyethyleneimine-modified nanoparticles through epigenetic activation of hepatic transcription factors. Mater Today Chem. 2020;17:100281.

    Article  CAS  Google Scholar 

  62. Chang Y, Lee E, Kim J, Kwon Y-W, Kwon Y, Kim J. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials. 2019;192:500–9.

    Article  CAS  PubMed  Google Scholar 

  63. Muniyandi P, Palaninathan V, Mizuki T, Maekawa T, Hanajiri T, Mohamed MS. Poly(lactic-co-glycolic acid)/polyethylenimine nanocarriers for direct genetic reprogramming of microRNA targeting cardiac fibroblasts. ACS Appl Nano Mater. 2020;3(3):2491–505.

    Article  CAS  Google Scholar 

  64. Yoo J, Lee E, Kim HY. Youn D-h, Jung J, Kim H, et al. Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson’s disease therapy. Nat Nanotechnol. 2017;12(10):1006–14.

    Article  CAS  PubMed  Google Scholar 

  65. Yarmush ML, Golberg A, Sersa G, Kotnik T, Miklavcic D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng. 2014;16:295–320.

    Article  CAS  PubMed  Google Scholar 

  66. Gallego-Perez D, Pal D, Ghatak S, Malkoc V, Higuita-Castro N, Gnyawali S, et al. Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nat Nanotechnol. 2017;12(10):974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhao X, Huang X, Wang X, Wu Y, Eisfeld A-K, Schwind S, et al. Nanochannel electroporation as a platform for living cell interrogation in acute myeloid leukemia. Adv Sci. 2015;2(12):1500111.

    Article  Google Scholar 

  68. Lemmerman LR, Balch MHH, Moore JT, Alzate-Correa D, Rincon-Benavides MA, Salazar-Puerta A, et al. Nanotransfection-based vasculogenic cell reprogramming drives functional recovery in a mouse model of ischemic stroke. Sci Adv. 2021;7(12):eabd4735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moore JT, Wier CG, Lemmerman LR, Ortega-Pineda L, Dodd DJ, Lawrence WR, et al. Nanochannel-based poration drives benign and effective nonviral gene delivery to peripheral nerve tissue. Adv Biosyst. 2020;4(11):2000157.

    Article  CAS  Google Scholar 

  70. Boukany PE, Morss A, Liao WC, Henslee B, Jung H, Zhang X, et al. Nanochannel electroporation delivers precise amounts of biomolecules into living cells. Nat Nanotechnol. 2011;6(11):747–54.

    Article  CAS  PubMed  Google Scholar 

  71. Gallego-Perez D, Otero JJ, Czeisler C, Ma J, Ortiz C, Gygli P, et al. Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine. 2016;12(2):399–409.

    Article  CAS  PubMed  Google Scholar 

  72. Ortega-Pineda L, Sunyecz A, Salazar-Puerta AI, Rincon-Benavides MA, Alzate-Correa D, Anaparthi AL, et al. Designer extracellular vesicles modulate pro-neuronal cell responses and improve intracranial retention. Advanced Healthcare Materials.n/a(n/a):2100805.

  73. Tang S, Salazar Puerta A, Richards J, Khan S, Hoyland J, Gallego-Perez D, et al. Non-viral reprogramming of human nucleus pulposus cells with FOXF1 via extracellular vesicle delivery: an in vitro and in vivo study. Eur Cell Mater. 2021;41:90–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pigeau GM, Csaszar E, Dulgar-Tulloch A. Commercial scale manufacturing of allogeneic cell therapy. Front Med. 2018;5(233).

  75. Nogueira DES, Cabral JMS, Rodrigues CAV. Single-use bioreactors for human pluripotent and adult stem cells: towards regenerative medicine applications. Bioengineering. 2021;8(5):68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sah J. Challenges of Stem Cell Therapy in Developing Country. J Stem Cell Res Ther. 2016;1:1–3.

    Google Scholar 

  77. Bryant J, Hlavaty KA, Zhang X, Yap W-T, Zhang L, Shea LD, et al. Nanoparticle delivery of donor antigens for transplant tolerance in allogeneic islet transplantation. Biomaterials. 2014;35(31):8887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev. 2008;60(2):124–45.

    Article  CAS  PubMed  Google Scholar 

  79. Cao Y, Ma E, Cestellos-Blanco S, Zhang B, Qiu R, Su Y, et al. Nontoxic nanopore electroporation for effective intracellular delivery of biological macromolecules. Proc Natl Acad Sci. 2019;116(16):7899–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xie X, Xu AM, Leal-Ortiz S, Cao Y, Garner CC, Melosh NA. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection. ACS Nano. 2013;7(5):4351–8.

    Article  CAS  PubMed  Google Scholar 

  81. Vasdekis AE, Scott EA, O’Neil CP, Psaltis D, Hubbell JA. Precision intracellular delivery based on optofluidic polymersome rupture. ACS Nano. 2012;6(9):7850–7.

    Article  CAS  PubMed  Google Scholar 

  82. Joo J, Kwon EJ, Kang J, Skalak M, Anglin EJ, Mann AP, et al. Porous silicon–graphene oxide core–shell nanoparticles for targeted delivery of siRNA to the injured brain. Nanoscale Horizons. 2016;1(5):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kwon EJ, Lasiene J, Jacobson BE, Park I-K, Horner PJ, Pun SH. Targeted nonviral delivery vehicles to neural progenitor cells in the mouse subventricular zone. Biomaterials. 2010;31(8):2417–24.

    Article  CAS  PubMed  Google Scholar 

  84. Moyer TJ, Kassam HA, Bahnson ESM, Morgan CE, Tantakitti F, Chew TL, et al. Shape-dependent targeting of injured blood vessels by peptide amphiphile supramolecular nanostructures. Small. 2015;11(23):2750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some illustrations were created using biorender.com.

Funding

Funding for this work was partly provided by the New Innovator Award DP2EB028110 (NIBIB/NIH), DP1DK126199 (NIDDK/NIH), and the Lisa Dean Moseley Foundation.

Author information

Authors and Affiliations

Authors

Contributions

The idea was conceived by DGP, DAC, and NHC. DGP, WL, and DAC oversaw the writing and editing of the main text, with input from all co-authors. ASP oversaw the creation of figures and figure legends.

Corresponding author

Correspondence to D. Gallego-Perez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Guest Editors: Aliasger Salem, Juliane Nguyen and Kristy Ainslie

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzate-Correa, D., Lawrence, W.R., Salazar-Puerta, A. et al. Nanotechnology-Driven Cell-Based Therapies in Regenerative Medicine. AAPS J 24, 43 (2022). https://doi.org/10.1208/s12248-022-00692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00692-3

KEY WORDS

Navigation