Skip to main content

Advertisement

Log in

FDA’s Poly (Lactic-Co-Glycolic Acid) Research Program and Regulatory Outcomes

  • Review Article
  • Theme: Celebrating Women in the Pharmaceutical Sciences
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Poly (lactic-co-glycolic acid) (PLGA) has been used in many long-acting drug formulations which have been approved by the US Food and Drug Administration (FDA). However, generic counterparts for PLGA products have yet to gain FDA approval due to many complexities in formulation, characterization, and evaluation of test products. To address the challenges of generic development of PLGA-based products, the FDA has established an extensive research program to investigate novel methods and tools to aid both product development and regulatory review. The research focus have been: (1) analytical tools for characterization of PLGA polymers; (2) impacts of PLGA characteristics and manufacturing conditions on product performance; (3) in vitro drug release testing and in vitro-in vivo correlation of PLGA-based products, and (4) modeling tools to facilitate formulation design and bioequivalence study design of PLGA-based drugs. This article provides an overview of FDA’s PLGA research program and highlights scientific accomplishments as well as regulatory outcomes that have resulted from successful research investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. 21 CFR 314.94(a)(9)(iii)

References

  1. In vitro-in vivo correlations of ocular implants (U01). 2013 [7/22/20]; Available from: https://grants.nih.gov/grants/guide/rfa-files/rfa-fd-13-029.html.

  2. Wang Y, Qu W. Choi S. American Pharmaceutical Review: FDA’s regulatory science program for generic PLA/PLGA-based drug products; 2016.

    Google Scholar 

  3. CDER/FDA. Product-specific guidances for generic drug development 2020 [7/22]; Available from: https://www.accessdata.fda.gov/scripts/cder/psg/index.cfm.

  4. CDER/FDA Draft guidance on Risperidone injectable intramuscular 2020 [7/27]; Available from: https://www.accessdata.fda.gov/drugsatfda_docs/psg/Risperidone_intramuscular%20injection_RLD%2021346_RV08-16%20separate%20post.pdf.

  5. CDER/FDA. Upcoming product-specific guidances for complex generic drug product development (2020) [8/26]; Available from: https://www.fda.gov/drugs/guidances-drugs/upcoming-product-specific-guidances-complex-generic-drug-product-development.

  6. Garner J, Skidmore S, Park H, Park K, Choi S, Wang Y. A protocol for assay of poly(lactide-co-glycolide) in clinical products. J Pharm Sci. 2018, 107;(1):353–61. https://doi.org/10.1016/jxphs2017100272015.

  7. Hadar J, Skidmore S, Garner J, Park H, Park K, Wang Y, et al. Characterization of branched poly(lactide-co-glycolide) polymers used in injectable, long-acting formulations. J Control Release. 2019;304:125–34. https://doi.org/10.1016/jjconrel2019050032019.

    Article  PubMed  Google Scholar 

  8. Park K, Skidmore S, Hadar J, Garner J, Park H, Otte A, et al. Injectable, long-acting PLGA formulations: analyzing PLGA and understanding microparticle formation. Int J Pharm. 2019;(565):447–57. https://doi.org/10.1016/jijpharm2019040522019.

  9. Skidmore S, Hadar J, Garner J, Park H, Park K, Wang Y, et al. Complex sameness: separation of mixed poly(lactide-co-glycolide)s based on the lactide:glycolide ratio. Int J Pharm. 2019;(561):305–13. https://doi.org/10.1016/jijpharm2019030172019.

  10. Andhariya JV, Jog R, Shen J, Choi S, Wang Y, Zou Y, et al. In vitro-in vivo correlation of parenteral PLGA microspheres: effect of variable burst release. AAPS PharmSciTech. 2020;20(8):320. https://doi.org/10.1208/s12249-019-1508-72020.

    Article  Google Scholar 

  11. Shen J, Choi S, Qu W, Wang Y, Burgess DJ. In vitro-in vivo correlation of parenteral Risperidone polymeric microspheres. Int J Pharm. 2016;498(1-2):274–82. https://doi.org/10.1016/jijpharm2015120312015.

    Article  CAS  PubMed  Google Scholar 

  12. Andhariya JV, Choi S, Wang Y, Zou Y, Burgess DJ, Shen J. Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres. J Control Release. 2017;255:27–35. https://doi.org/10.1016/jjconrel2017033962017.

    Article  CAS  PubMed  Google Scholar 

  13. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. Int J Pharm. 2018;549(1-2):109–14. https://doi.org/10.1016/jijpharm2018070192017.

    Article  Google Scholar 

  14. Doty AC, Weinstein DG, Hirota K, Olsen KF, Ackermann R, Wang Y, et al. Mechanisms of in vivo release of triamcinolone acetonide from PLGA microspheres. Eur J Pharm Biopharm. 2016;113:24–33. https://doi.org/10.1016/jejpb2016110082017.

    Article  PubMed  Google Scholar 

  15. Hirota K, Doty AC, Ackermann R, Zhou J, Olsen KF, Feng MR, et al. Characterizing release mechanisms of leuprolide acteate loaded PLGA microspheres for IVIVC development I: in vitro evaluation. J Aerosol Sci. 2013;59:6–21. https://doi.org/10.1016/jjaerosci201301008.

    Article  Google Scholar 

  16. Andhariya J, Jog R, Shen J, Choi S, Wang Y, Zou Y, et al. Development of level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. Mol Pharm. 2019;16(8):3617–25. https://doi.org/10.1021/acsmolpharmaceut9b004552019.

    Article  Google Scholar 

  17. Doty A, Hirota K, Olsen K, Sakamoto N, Wang Y, Choi S, et al. Validation of a cage implant system for assessing in vivo performance of long-acting relase microspheres. Pharm Res. 2013;29(11):3122–30. https://doi.org/10.1007/s11095-012-0804-72016.

    Article  Google Scholar 

  18. Doty AC, Zhang Y, Weinstein DG, Wang Y, Choi S, Qu W, et al. Mechanistic analysis of triamcinolone acetonide release from PLGA microspheres as a function of varying in vitro release conditions. Biomaterials. 2016;109:88–96. https://doi.org/10.1016/jbiomaterials2016070412016.

    Article  CAS  PubMed  Google Scholar 

  19. Andhariya JV, Shen J, Wang Y, Choi S, Burgess DJ. Effect of minor manufacturing changes on stability of compositionally equivalent PLGA microspheres. J Pharm Sci. 2019;108(6):2002–11. https://doi.org/10.1016/jxphs2019010032019.

    Article  Google Scholar 

  20. Zhou J, Hirota K, Ackermann R, Walker J, Wang Y, Choi S, et al. Reverse engineering the 1-month Lupron Depot(R). AAPS J. 2018;20(6):105. https://doi.org/10.1208/s12248-018-0253-2.

    Article  CAS  PubMed  Google Scholar 

  21. Kohno M, Andhariya J, Rothstein S, Wang Y, Qin B, Burgess D. The effect of PLGA molecular weight on drug release from microspheres. AAPS 2019. PharmSci. 2020;360, San Antonio, TX.

  22. Zhou J, Walker J, Ackermann R, Olsen K, Hong JKY, Wang Y, et al. Effect of manufacturing variables and raw materials on the composition-equivalent PLGA microspheres for 1-month controlled release of leuprolide. Mol Pharm. 2020;17(5):1502–15. https://doi.org/10.1021/acs.molpharmaceut.9b01188.

    Article  CAS  PubMed  Google Scholar 

  23. FDA. GDUFA II Commitment Letter (2020) [7/30]; Available from: https://www.fda.gov/media/101052/download.

  24. CDER/FDA. FY 2018 GDUFA Science and Research Outcomes (2020) [7/30]; Available from: https://www.fda.gov/drugs/generic-drugs/fy-2018-gdufa-science-and-research-outcomes

  25. CDER/FDA. Formal Meetings Between FDA and ANDA Applicants of Complex Products (2020) Under GDUFA - Guidance for Industry. 2017 [8/26/20]; Available from: https://www.fda.gov/media/107626/download.

  26. Equivalence of complex long acting drugs workshop (2020) Virtual Annual Meeting Vision for Global Impact Controlled Release Society.

  27. Shen J, Lee K, Choi S, Qu W, Wang Y, Burgess DJ. A reproducible accelerated in vitro release testing method for PLGA microspheres. AAPS J. 2017;19(5):1396–410. https://doi.org/10.1208/s12248-017-0095-32016.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the awarded project research collaborators that have contributed to the success of the PLGA research program.

Disclaimer

This article reflects the views of the authors and should not be construed to represent the views or policies of the US Food and Drug Administration (FDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Additional information

Guest Editors: Diane Burgess, Marilyn Morris and Meena Subramanyam

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qin, B., Xia, G. et al. FDA’s Poly (Lactic-Co-Glycolic Acid) Research Program and Regulatory Outcomes. AAPS J 23, 92 (2021). https://doi.org/10.1208/s12248-021-00611-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-021-00611-y

KEY WORDS

Navigation