Skip to main content

Advertisement

Log in

Simultaneous Ivabradine Parent-Metabolite PBPK/PD Modelling Using a Bayesian Estimation Method

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Ivabradine and its metabolite both demonstrate heart rate–reducing effect (If current inhibitors) and undergo CYP3A4 metabolism. The purpose of this study was to develop a joint parent-metabolite physiologically based pharmacokinetic (PBPK)/pharmacodynamic (PD) model to predict the PK and PD of ivabradine and its metabolite following intravenous (i.v.) or oral administration (alone or co-administered with CYP3A4 inhibitors). Firstly, a parent-metabolite disposition model was developed and optimised using individual plasma concentration-time data following i.v. administration of ivabradine or metabolite within a Bayesian framework. Secondly, the model was extended and combined with a mechanistic intestinal model to account for oral absorption and drug-drug interactions (DDIs) with CYP3A4 inhibitors (ketoconazole, grapefruit juice). Lastly, a PD model was linked to the PBPK model to relate parent and metabolite PK to heart rate (HR) reduction. The disposition model described successfully parent-metabolite PK following i.v. administration. Following integration of a gut model, the PBPK model adequately predicted plasma concentration profiles and the DDI risk (92% and 85% of predicted AUC+inhibitor/AUCcontrol and Cmax+inhibitor/Cmaxcontrol for ivabradine and metabolite within the prediction limits). Ivabradine-metabolite PBPK model was linked to PD by using the simulated unbound parent-metabolite concentrations in the heart. This approach successfully predicted the effects of both entities on HR (observed vs predicted − 7.7/− 5.9 bpm and − 15.8/− 14.0 bpm, control and ketoconazole group, respectively). This study provides a framework for PBPK/PD modelling of a parent-metabolite and can be scaled to other populations or used for investigation of untested scenarios (e.g. evaluation of DDI risk in special populations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nestorov I. Whole body pharmacokinetic models. Clin Pharmacokinet. 2003;42(10):883–908.

    CAS  PubMed  Google Scholar 

  2. Jones H, Chen Y, Gibson C, Heimbach T, Parrott N, Peters S, et al. Physiologically based pharmacokinetic modeling in drug discovery and development: a pharmaceutical industry perspective. Clin Pharmacol Ther. 2015;97(3):247–62.

    CAS  PubMed  Google Scholar 

  3. Grimstein M, Yang Y, Zhang X, Grillo J, Huang S-M, Zineh I, et al. Physiologically based pharmacokinetic modeling in regulatory science: an update from the U.S. food and drug administration’s office of clinical pharmacology. J Pharm Sci. 2019;108(1):21–5.

    CAS  PubMed  Google Scholar 

  4. Gertz M, Cartwright CM, Hobbs MJ, Kenworthy KE, Rowland M, Houston JB, et al. Cyclosporine inhibition of hepatic and intestinal CYP3A4, uptake and efflux transporters: application of PBPK modeling in the assessment of drug-drug interaction potential. Pharm Res. 2013;30(3):761–80.

    CAS  PubMed  Google Scholar 

  5. de Zwart L, Snoeys J, Jong JD, Sukbuntherng J, Mannaert E, Monshouwer M. Ibrutinib dosing strategies based on interaction potential of CYP3A4 perpetrators using physiologically based pharmacokinetic modeling. Clin Pharmacol Ther. 2016;100(5):548–57.

    PubMed  Google Scholar 

  6. Rodgers T, Leahy D, Rowland M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases. J Pharm Sci. 2005;94(6):1259–76.

    CAS  PubMed  Google Scholar 

  7. Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.

    CAS  PubMed  Google Scholar 

  8. Poulin P, Theil F. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 2002;91(1):129–56.

    CAS  PubMed  Google Scholar 

  9. Yau E, Olivares-Morales A, Gertz M, Parrott N, Darwich AS, Aarons L, et al. Global sensitivity analysis of the Rodgers and Rowland model for prediction of tissue: plasma partitioning coefficients: assessment of the key physiological and physicochemical factors that determine small-molecule tissue distribution. AAPS J. 2020;22(2):41.

    PubMed  Google Scholar 

  10. Harwood MD, Achour B, Neuhoff S, Russell MR, Carlson G, Warhurst G, et al. In vitro–in vivo extrapolation scaling factors for intestinal P-glycoprotein and breast cancer resistance protein: part I: a cross-laboratory comparison of transporter-protein abundances and relative expression factors in human intestine and Caco-2 cells. Drug Metab Dispos. 2016;44(3):297–307.

    CAS  PubMed  Google Scholar 

  11. Scotcher D, Jones C, Posada M, Galetin A, Rostami-Hodjegan A. Key to opening kidney for in vitro-in vivo extrapolation entrance in health and disease: part II: mechanistic models and in vitro-in vivo extrapolation. AAPS J. 2016;18(5):1082–94.

    CAS  PubMed  Google Scholar 

  12. Zamek-Gliszczynski MJ, Lee CA, Poirier A, Bentz J, Chu X, Ellens H, et al. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin Pharmacol Ther. 2013;94(1):64–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Guo Y, Chu X, Parrott NJ, Brouwer KLR, Hsu V, Nagar S, et al. Advancing predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin Pharmacol Ther. 2018;104(5):865–89.

    PubMed  PubMed Central  Google Scholar 

  14. Rostami-Hodjegan A. Reverse translation in PBPK and QSP: going backwards in order to go forward with confidence. Clin Pharmacol Ther. 2018;103(2):224–32.

    PubMed  Google Scholar 

  15. U.S. Food and Drug Administration. Cannabidiol clinical pharmacology review. [January 2020]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/210365Orig1s000ClinPharmR.pdf

  16. U.S. Food and Drug Administration. Entrectinib clinical pharmacology review. [January 2020]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212725Orig1s000,%20212726Orig1s000MultidisciplineR.pdf.

  17. U.S. Food and Drug Administration. Doravirine clinical pharmacology review. [January 2020]. Available from: https://www.fda.gov/media/128270/download.

  18. Tsamandouras N, Dickinson G, Guo Y, Hall S, Rostami-Hodjegan A, Galetin A, et al. Development and application of a mechanistic pharmacokinetic model for simvastatin and its active metabolite simvastatin acid using an integrated population PBPK approach. Pharm Res. 2015;32(6):1864–83.

    CAS  PubMed  Google Scholar 

  19. Gu H, Dutreix C, Rebello S, Ouatas T, Wang L, Chun DY, et al. Simultaneous physiologically based pharmacokinetic (PBPK) modeling of parent and active metabolites to investigate complex CYP3A4 drug-drug interaction potential: a case example of midostaurin. Drug Metab Dispos. 2018;46(2):109–21.

    CAS  PubMed  Google Scholar 

  20. Xue C, Zhang X, Cai W. Prediction of drug-drug interactions with bupropion and its metabolites as CYP2D6 inhibitors using a physiologically-based pharmacokinetic model. Pharmaceutics. 2018;10(1):1.

    CAS  Google Scholar 

  21. Varma MVS, Lin J, Bi Y-A, Kimoto E, Rodrigues AD. Quantitative rationalization of gemfibrozil drug interactions: consideration of transporters-enzyme interplay and the role of circulating metabolite gemfibrozil 1-o- -glucuronide. Drug Metab Dispos. 2015;43(7):1108–18.

    CAS  PubMed  Google Scholar 

  22. Posada MM, Morse BL, Turner PK, Kulanthaivel P, Hall SD, Dickinson GL. Predicting clinical effects of CYP3A4 modulators on abemaciclib and active metabolites exposure using physiologically based pharmacokinetic modeling. J Clin Pharmacol. 2020. https://doi.org/10.1002/jcph.1584-1552-4604.

  23. U.S. Food and Drug Administration. Safety testing of drug metabolites; 2018 [January 2020]. Available from: http://www.fda.gov/regulatory-information/search-fda-guidance-documents/safety-testing-drug-metabolites.

  24. U.S. Food and Drug Administration. In vitro drug interaction studies—cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. 2020 [January 2020]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/vitro-drug-interaction-studies-cytochrome-p450-enzyme-and-transporter-mediated-drug-interactions.

  25. Evans ND, Godfrey KR, Chapman MJ, Chappell MJ, Aarons L, Duffull SB. An identifiability analysis of a parent–metabolite pharmacokinetic model for ivabradine. J Pharmacokinet Pharmacodyn. 2001;28(1):93–105.

    CAS  PubMed  Google Scholar 

  26. Bertrand J, Laffont CM, Mentré F, Chenel M, Comets E. Development of a complex parent-metabolite joint population pharmacokinetic model. AAPS J. 2011;13(3):390–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tsamandouras N, Rostami-Hodjegan A, Aarons L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data: parameter estimation in PBPK models. Br J Clin Pharmacol. 2015;79(1):48–55.

    CAS  PubMed  Google Scholar 

  28. Wendling T, Dumitras S, Ogungbenro K, Aarons L. Application of a Bayesian approach to physiological modelling of mavoglurant population pharmacokinetics. J Pharmacokinet Pharmacodyn. 2015;42(6):639–57.

    CAS  PubMed  Google Scholar 

  29. Leil TA. A bayesian perspective on estimation of variability and uncertainty in mechanism-based models. CPT Pharmacometrics Syst Pharmacol. 2014;3(6):e121.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zurlinden TJ, Reisfeld B. Physiologically based modeling of the pharmacokinetics of acetaminophen and its major metabolites in humans using a Bayesian population approach. Eur J Drug Metab Pharmacokinet. 2016;41(3):267–80.

    CAS  PubMed  Google Scholar 

  31. U.S. Food and Drug Administration. Corlanor (ivabradine) Oral Solution clinical review. 2019; [January 2020]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209964lbl.pdf.

  32. Ragueneau I, Poirier J-M, Radembino N, Sao AB, Funck-Brentano C, Jaillon P. Pharmacokinetic and pharmacodynamic drug interactions between digoxin and macrogol 4000, a laxative polymer, in healthy volunteers. Br J Clin Pharmacol. 1999;48(3):453–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Duffull SB, Aarons L. Development of a sequential linked pharmacokinetic and pharmacodynamic simulation model for ivabradine in healthy volunteers. Eur J Pharm Sci. 2000;10(4):275–84.

    CAS  PubMed  Google Scholar 

  34. Peigné S, Bouzom F, Brendel K, Gesson C, Fouliard S, Chenel M. Model-based approaches for ivabradine development in paediatric population, part I: study preparation assessment. J Pharmacokinet Pharmacodyn. 2016;43(1):13–27.

    PubMed  Google Scholar 

  35. Peigné S, Fouliard S, Decourcelle S, Chenel M. Model-based approaches for ivabradine development in paediatric population, part II: PK and PK/PD assessment. J Pharmacokinet Pharmacodyn. 2016;43(1):29–43.

    PubMed  Google Scholar 

  36. Wendling T, Tsamandouras N, Dumitras S, Pigeolet E, Ogungbenro K, Aarons L. Reduction of a whole-body physiologically based pharmacokinetic model to stabilise the Bayesian analysis of clinical data. AAPS J. 2016;18(1):196–209.

    CAS  PubMed  Google Scholar 

  37. Dokoumetzidis A, Aarons L. Proper lumping in systems biology models. IET Syst Biol. 2009;3(1):40–51.

    CAS  PubMed  Google Scholar 

  38. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

    CAS  PubMed  Google Scholar 

  39. Valentin J. Basic anatomical and physiological data for use in radiological protection: reference values: ICRP publication 89. Ann ICRP. 2002;32(3):1–277.

    Google Scholar 

  40. Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7(4):457–72.

    Google Scholar 

  41. Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A4 substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–42.

    CAS  PubMed  Google Scholar 

  42. Hintz RJ, Johnson KC. The effect of particle size distribution on dissolution rate and oral absorption. Int J Pharm. 1989;51(1):9–17.

    CAS  Google Scholar 

  43. Attia AK, Abo-Talib NF, Tammam MH. Voltammetric determination of ivabradine hydrochloride using multiwalled carbon nanotubes modified electrode in presence of sodium dodecyl sulfate. Adv Pharm Bull. 2017;7(1):151–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tubati SSR, Murthy TEGK, Siva Rao AS. Formulation development and statistical optimization of ivabradine hydrochloride floating pulsatile microspheres using response surface methodology. Asian J Pharm. 2016;10(2):S110–20.

  45. U.S. Food and Drug Administration. Ivabradine: novel heart rate lowering drug gains FDA approval for chronic heart failure; 2015 [December 2019]. Available from: https://www.acc.org/latest-in-cardiology/articles/2015/08/03/12/45/ivabradine-novel-heart-rate-lowering-drug-gains-fda-approval-for-chf.

  46. Guest EJ, Aarons L, Houston JB, Rostami-Hodjegan A, Galetin A. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug-drug interactions. Drug Metab Dispos. 2011;39(2):170–3.

    CAS  PubMed  Google Scholar 

  47. Tylutki Z, Mendyk A, Polak S. Mechanistic physiologically based pharmacokinetic (PBPK) model of the heart accounting for inter-individual variability: development and performance verification. J Pharm Sci. 2018;107(4):1167–77.

    CAS  PubMed  Google Scholar 

  48. Duval V, Laveille C. Ivabradine and S18982 activities on heart rate: a population PK/PD analysis. 2005. Available from: https://www.page-meeting.org/default.asp?abstract=811.

  49. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58.

    CAS  PubMed  Google Scholar 

  50. Gertz M, Tsamandouras N, Säll C, Houston JB, Galetin A. Reduced physiologically-based pharmacokinetic model of repaglinide: impact of OATP1B1 and CYP2C8 genotype and source of in vitro data on the prediction of drug-drug interaction risk. Pharm Res. 2014;31(9):2367–82.

    CAS  PubMed  Google Scholar 

  51. Yang Y, Xu X, Georgopoulos PG. A Bayesian population PBPK model for multiroute chloroform exposure. J Expo Sci Environ Epidemiol. 2010;20(4):326–41.

    CAS  PubMed  Google Scholar 

  52. Krauss M, Tappe K, Schuppert A, Kuepfer L, Goerlitz L. Bayesian population physiologically-based pharmacokinetic (PBPK) approach for a physiologically realistic characterization of interindividual variability in clinically relevant populations. PLoS One. 2015;10(10):e0139423.

    PubMed  PubMed Central  Google Scholar 

  53. Nguyen HQ, Lin J, Kimoto E, Callegari E, Tse S, Obach RS. Prediction of losartan-active carboxylic acid metabolite exposure following losartan administration using static and physiologically based pharmacokinetic models. J Pharm Sci. 2017;106(9):2758–70.

    CAS  PubMed  Google Scholar 

  54. Hanke N, Teifel M, Moj D, Wojtyniak J-G, Britz H, Aicher B, et al. A physiologically based pharmacokinetic (PBPK) parent-metabolite model of the chemotherapeutic zoptarelin doxorubicin—integration of in vitro results, phase I and phase II data and model application for drug–drug interaction potential analysis. Cancer Chemother Pharmacol. 2018;81(2):291–304.

    CAS  PubMed  Google Scholar 

  55. Luffer-Atlas D. Unique/major human metabolites: why, how, and when to test for safety in animals. Drug Metab Rev. 2008;40(3):447–63.

    CAS  PubMed  Google Scholar 

  56. Luffer-Atlas D, Atrakchi A. A decade of drug metabolite safety testing: industry and regulatory shared learning. Expert Opin Drug Metab Toxicol. 2017;13(9):897–900.

    PubMed  Google Scholar 

  57. Yu LX, Crison JR, Amidon GL. Compartmental transit and dispersion model analysis of small intestinal transit flow in humans. Int J Pharm. 1996;140(1):111–8.

    CAS  Google Scholar 

  58. Jamei M, Turner D, Yang J, Neuhoff S, Polak S, Rostami-Hodjegan A, et al. Population-based mechanistic prediction of oral drug absorption. AAPS J. 2009;11(2):225–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mishra H, Polak S, Jamei M, Rostami-Hodjegan A. Interaction between domperidone and ketoconazole: toward prediction of consequent QTc prolongation using purely in vitro information. CPT Pharmacometrics Syst Pharmacol. 2014;3(8):1–11.

    Google Scholar 

  60. Gertz M, Davis JD, Harrison A, Houston JB, Galetin A. Grapefruit juice-drug interaction studies as a method to assess the extent of intestinal availability: utility and limitations. Curr Drug Metab. 2008;9(8):785–95.

    CAS  PubMed  Google Scholar 

  61. Tylutki Z, Polak S. A four-compartment PBPK heart model accounting for cardiac metabolism - model development and application. Sci Rep. 2017;7:39494

Download references

Acknowledgements

J.L. was supported by a PhD studentship from Institut de Recherches Internationales Servier, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Galetin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 774 kb)

ESM 2

(DOCX 1078 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, J., Vincent, L., Chenel, M. et al. Simultaneous Ivabradine Parent-Metabolite PBPK/PD Modelling Using a Bayesian Estimation Method. AAPS J 22, 129 (2020). https://doi.org/10.1208/s12248-020-00502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00502-8

Key Words

Navigation