Skip to main content

Advertisement

Log in

Clinical Immunogenicity Risk Assessment Strategy for a Low Risk Monoclonal Antibody

  • Review Article
  • Theme: Compendium of Immunogenicity Risk Assessments: an Industry Guidance Built on Experience and Published Work
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

This article provides a theoretical case-study risk assessment report for a low-risk monoclonal antibody (mAb) therapeutic. In terms of risk, there are considerations around risks to safety, but also risks regarding effects on pharmacokinetics (PK), pharmacodynamics (PD), and efficacy. Much of the discussion in this document is around the risk of immunogenicity incidence. A higher incidence of immunogenicity would necessitate a detailed review of the PK, efficacy and safety in anti-drug antibody (ADA) positive and ADA negative subjects, in order to evaluate potential effects. The publication is intended to provide a framework of some the current thought processes around assessing immunogenicity risk and for building strategies to mitigate those risks. For this example, we have created a hypothetical antibody, ABC-123, targeting a membrane protein on antigen presenting cells, for the treatment of rheumatoid arthritis (RA). This hypothetical antibody therapeutic is provided as an example for the purposes of risk assessment for a low risk molecule, although any application of similar approach would be case by case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koren E, Smith HW, Shores E, Shankar G, Finco-Kent D, Rup B, et al. Recommendations on risk-based strategies for detection and characterization of antibodies against biotechnology products. J Immunol Methods. 2008;333(1–2):1–9.

    Article  CAS  PubMed  Google Scholar 

  2. Shankar G, Pendley C, Stein KE. A risk-based bioanalytical strategy for the assessment of antibody immune responses against biological drugs. Nat Biotechnol. 2007;25(5):555–61.

    Article  CAS  PubMed  Google Scholar 

  3. Strand V, Balsa A, Al-Saleh J, Barile-Fabris L, Horiuchi T, Takeuchi T, et al. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. BioDrugs. 2017;31(4):299–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74.

    Article  CAS  PubMed  Google Scholar 

  5. Araujo J, Zocher M, Wallace K, Peng K, Fischer SK. Increased rheumatoid factor interference observed during immunogenicity assessment of an fc-engineered therapeutic antibody. J Pharm Biomed Anal. 2011;55(5):1041–9.

    Article  CAS  PubMed  Google Scholar 

  6. Getts DR, Getts MT, McCarthy DP, Chastain EM, Miller SD. Have we overestimated the benefit of human(ized) antibodies? MAbs. 2010;2(6):682–94.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2(3):256–65.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Caceres MC, Guerrero-Martin J, Perez-Civantos D, Palomo-Lopez P, Delgado-Mingorance JI, Duran-Gomez N. The importance of early identification of infusion-related reactions to monoclonal antibodies. Ther Clin Risk Manag. 2019;15:965–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Immunogenicity Testing of Therapeutic Protein Products —Developing and Validating Assays for Anti-Drug Antibody Detection [Internet]. 2019. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/immunogenicity-testing-therapeutic-protein-products-developing-and-validating.

  10. Guideline on Immunogenicity assessment of therapeutic proteins [Internet]. 2017. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en.pdf.

  11. Silva JP, Vetterlein O, Jose J, Peters S, Kirby H. The S228P mutation prevents in vivo and in vitro IgG4 fab-arm exchange as demonstrated using a combination of novel quantitative immunoassays and physiological matrix preparation. J Biol Chem. 2015;290(9):5462–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mufarrege EF, Giorgetti S, Etcheverrigaray M, Terry F, Martin W, De Groot AS. De-immunized and functional therapeutic (DeFT) versions of a long lasting recombinant alpha interferon for antiviral therapy. Clin Immunol. 2017;176:31–41.

    Article  CAS  PubMed  Google Scholar 

  13. Joubert MK, Deshpande M, Yang J, Reynolds H, Bryson C, Fogg M, et al. Use of in vitro assays to assess immunogenicity risk of antibody-based biotherapeutics. PLoS One. 2016;11(8):e0159328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang T, Song X, Xu L, Ma J, Zhang Y, Gong W, et al. The binding of an anti-PD-1 antibody to FcgammaRI has a profound impact on its biological functions. Cancer Immunol Immunother. 2018;67(7):1079–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Herbener P, Schonfeld K, Konig M, Germer M, Przyborski JM, Bernoster K, et al. Functional relevance of in vivo half antibody exchange of an IgG4 therapeutic antibody-drug conjugate. PLoS One. 2018;13(4):e0195823.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. OPDIVO (nivolumab) injection, for intravenous use [Internet]. 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125554s058lbl.pdf.

  17. KEYTRUDA (pembrolizumab) for injection, for intravenous use [Internet]. 2019. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125514Orig1s054lbl.pdf.

  18. BESPONSA (inotuzumab ozogamicin) for injection, for intravenous use [Internet]. 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761040s000lbl.pdf.

  19. Specifications: test procedures and acceptance criteria for biotechnological/biological products Q6B [Internet]. 1999. Available from: https://database.ich.org/sites/default/files/Q6B_Guideline.pdf.

  20. Maser EA, Villela R, Silverberg MS, Greenberg GR. Association of trough serum infliximab to clinical outcome after scheduled maintenance treatment for Crohn's disease. Clin Gastroenterol Hepatol. 2006;4(10):1248–54.

    Article  CAS  PubMed  Google Scholar 

  21. Ordas I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther. 2012;91(4):635–46.

    Article  CAS  PubMed  Google Scholar 

  22. Schreiber S, Khaliq-Kareemi M, Lawrance IC, Thomsen OO, Hanauer SB, McColm J, et al. Maintenance therapy with certolizumab pegol for Crohn's disease. N Engl J Med. 2007;357(3):239–50.

    Article  CAS  PubMed  Google Scholar 

  23. Maini RN, Breedveld FC, Kalden JR, Smolen JS, Davis D, Macfarlane JD, et al. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor alpha monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis Rheum. 1998;41(9):1552–63.

    Article  CAS  PubMed  Google Scholar 

  24. Pouw MF, Krieckaert CL, Nurmohamed MT, van der Kleij D, Aarden L, Rispens T, et al. Key findings towards optimising adalimumab treatment: the concentration-effect curve. Ann Rheum Dis. 2015;74(3):513–8.

    Article  CAS  PubMed  Google Scholar 

  25. Zhuang Y, Xu Z, Frederick B, de Vries DE, Ford JA, Keen M, et al. Golimumab pharmacokinetics after repeated subcutaneous and intravenous administrations in patients with rheumatoid arthritis and the effect of concomitant methotrexate: an open-label, randomized study. Clin Ther. 2012;34(1):77–90.

    Article  CAS  PubMed  Google Scholar 

  26. Wang W, Leu J, Watson R, Xu Z, Zhou H. Investigation of the mechanism of therapeutic protein-drug interaction between methotrexate and Golimumab, an anti-TNFalpha monoclonal antibody. AAPS J. 2018;20(3):63.

    Article  PubMed  CAS  Google Scholar 

  27. Wu B, Chung S, Jiang XR, McNally J, Pedras-Vasconcelos J, Pillutla R, et al. Strategies to determine assay format for the assessment of neutralizing antibody responses to biotherapeutics. AAPS J. 2016;18(6):1335–50.

    Article  CAS  PubMed  Google Scholar 

  28. Peng K, Siradze K, Quarmby V, Fischer SK. Clinical immunogenicity specificity assessments: a platform evaluation. J Pharm Biomed Anal. 2011;54(3):629–35.

    Article  CAS  PubMed  Google Scholar 

  29. Carrasco-Triguero M, Dere RC, Milojic-Blair M, Saad OM, Nazzal D, Hong K, et al. Immunogenicity of antibody-drug conjugates: observations across eight molecules in eleven clinical trials. Bioanalysis. 2019.

  30. Qiu ZJ, Ying Y, Fox M, Peng K, Lewin-Koh SC, Coleman D, et al. A novel homogeneous biotin-digoxigenin based assay for the detection of human anti-therapeutic antibodies in autoimmune serum. J Immunol Methods. 2010;362(1–2):101–11.

    Article  CAS  PubMed  Google Scholar 

  31. Gross J, Moller R, Henke W, Hoesel W. Detection of anti-EPO antibodies in human sera by a bridging ELISA is much more sensitive when coating biotinylated rhEPO to streptavidin rather than using direct coating of rhEPO. J Immunol Methods. 2006;313(1–2):176–82.

    Article  CAS  PubMed  Google Scholar 

  32. Mikulskis A, Yeung D, Subramanyam M, Amaravadi L. Solution ELISA as a platform of choice for development of robust, drug tolerant immunogenicity assays in support of drug development. J Immunol Methods. 2011;365(1–2):38–49.

    Article  CAS  PubMed  Google Scholar 

  33. Shankar G, Devanarayan V, Amaravadi L, Barrett YC, Bowsher R, Finco-Kent D, et al. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J Pharm Biomed Anal. 2008;48(5):1267–81.

    Article  CAS  PubMed  Google Scholar 

  34. Devanarayan V, Smith WC, Brunelle RL, Seger ME, Krug K, Bowsher RR. Recommendations for systematic statistical computation of immunogenicity cut points. AAPS J. 2017;19(5):1487–98.

    Article  CAS  PubMed  Google Scholar 

  35. FDA. S6 Addendum to Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. 2012.

  36. REMICADE (infliximab) Lyophilized Concentrate for Injection, for Intravenous Use [Internet]. 2013. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/103772s5359lbl.pdf.

  37. RITUXAN (rituximab) Injection for Intravenous Use [Internet]. 2010. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/103705s5311lbl.pdf.

  38. Roskos LK, Davis CG, Schwab GM. The clinical pharmacology of therapeutic monoclonal antibodies. Drug Dev Res. 2004;61(3):108–20.

    Article  CAS  Google Scholar 

  39. Robbie GJ, Criste R, Dall'acqua WF, Jensen K, Patel NK, Losonsky GA, et al. A novel investigational fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother. 2013;57(12):6147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Griffin MP, Khan AA, Esser MT, Jensen K, Takas T, Kankam MK, et al. Safety, Tolerability, and Pharmacokinetics of MEDI8897, the Respiratory Syncytial Virus Prefusion F-Targeting Monoclonal Antibody with an Extended Half-Life, in Healthy Adults. Antimicrob Agents Chemother. 2017;61(3).

  41. Gaudinski MR, Coates EE, Houser KV, Chen GL, Yamshchikov G, Saunders JG, et al. Safety and pharmacokinetics of the fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults. PLoS Med. 2018;15(1):e1002493.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rother RP, Rollins SA, Mojcik CF, Brodsky RA, Bell L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat Biotechnol. 2007;25(11):1256–64.

    Article  CAS  PubMed  Google Scholar 

  43. SOLIRIS™ (eculizumab) Concentrated solution for intravenous infusion [Internet]. 2007. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/125166lbl.pdf.

  44. Kuriakose A, Chirmule N, Nair P. Immunogenicity of biotherapeutics: causes and association with posttranslational modifications. J Immunol Res. 2016;2016:1298473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Vanderlaan M, Zhu-Shimoni J, Lin S, Gunawan F, Waerner T, Van Cott KE. Experience with host cell protein impurities in biopharmaceuticals. Biotechnol Prog. 2018;34(4):828–37.

    Article  CAS  PubMed  Google Scholar 

  46. Fischer SK, Cheu M, Peng K, Lowe J, Araujo J, Murray E, et al. Specific immune response to phospholipase B-like 2 protein, a host cell impurity in Lebrikizumab clinical material. AAPS J. 2017;19(1):254–63.

    Article  CAS  PubMed  Google Scholar 

  47. Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, et al. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals. 2016;44(5):291–305.

    Article  CAS  PubMed  Google Scholar 

  48. ICH Quality Implementation Working Group, Points To Consider (R2); ICH-Endorsed Guide ForICH Q8/Q9/Q10 Implementation [Internet]. 2011. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_9_10_QAs/PtC/Quality_IWG_PtCR2_6dec2011.pdf.

  49. van Brummelen EM, Ros W, Wolbink G, Beijnen JH, Schellens JH. Antidrug antibody formation in oncology: clinical relevance and challenges. Oncologist. 2016;21(10):1260–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer. 2019;7(1):105.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Talotta R, Rucci F, Canti G, Scaglione F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunotherapy. 2019;11(3):241–54.

    Article  CAS  PubMed  Google Scholar 

  52. Deng R, Bumbaca D, Pastuskovas CV, Boswell CA, West D, Cowan KJ, et al. Preclinical pharmacokinetics, pharmacodynamics, tissue distribution, and tumor penetration of anti-PD-L1 monoclonal antibody, an immune checkpoint inhibitor. MAbs. 2016;8(3):593–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. SYNAGIS® (palivizumab) injection, for intramuscular use [Internet]. 2014. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/103770s5185lbl.pdf.

  54. ZINPLAVA™ (bezlotoxumab) injection, for intravenous use [Internet]. 2016. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/761046s000lbl.pdf.

  55. Montgomery DL, Matthews RP, Yee KL, Tobias LM, Dorr MB, Wrishko RE. Assessment of Bezlotoxumab Immunogenicity. Clin Pharmacol Drug Dev. 2019.

  56. Markham A. Ibalizumab: First Global Approval. Drugs. 2018;78(7):781–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. REPATHA (evolocumab) injection, for subcutaneous use [Internet]. 2017. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125522s014lbl.pdf.

  58. PRALUENT (alirocumab) injection, for subcutaneous use [Internet]. 2015. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/125559Orig1s000lbledt.pdf.

  59. Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ, Jukema JW, et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376(16):1517–26.

    Article  CAS  PubMed  Google Scholar 

  60. Kopylov U, Ben-Horin S, Seidman E. Therapeutic drug monitoring in inflammatory bowel disease. Ann Gastroenterol. 2014;27(4):304–12.

    PubMed  PubMed Central  Google Scholar 

  61. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Montgomery.

Additional information

Guest Editor: Johanna Mora

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kernstock, R., Sperinde, G., Finco, D. et al. Clinical Immunogenicity Risk Assessment Strategy for a Low Risk Monoclonal Antibody. AAPS J 22, 60 (2020). https://doi.org/10.1208/s12248-020-00440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-020-00440-5

KEY WORDS

Navigation