Skip to main content

Advertisement

Log in

Polymeric Nanocarrier Formulations of Biologics Using Inverse Flash NanoPrecipitation

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The encapsulation of water-soluble therapeutics and biologics into nanocarriers to produce novel therapeutics has been envisioned for decades, but clinical translation has been hampered by complex synthesis strategies. The methods that have been developed are often limited by poor encapsulation efficiency/loading or complex processing to achieve therapeutic loadings high enough to be medically relevant. To address this unmet need, we introduce a solubility-driven self-assembly process to form polymeric nanocarriers comprising a biologic in a hydrophilic core, encapsulated by a poly(lactic acid) shell, and stabilized by a poly(ethylene glycol) brush. Called “inverse Flash NanoPrecipitation (iFNP),” the technique achieves biologic loadings (wt% of total formulation) that are 5–15× higher than typical values (9–27% versus < 2%). In contrast to liposomes and polymersomes, we sequentially assemble the polymer layers to form the final nanocarrier. Installation of the poly(lactic acid) shell before water exposure sequesters the biologic in the core and results in the improved loadings that are achieved. We demonstrate the broad applicability of the process and illustrate its implementation by formulating over a dozen different oligosaccharides, antibiotics, peptides, proteins, and RNA into nanocarriers with narrow size distributions, at high loadings, and with high reproducibility. Lysozyme and horseradish peroxidase are shown to retain 99% activity after processing. These results demonstrate the potential for commercial implementation of this technology, enabling the translation of novel treatments in immunology, oncology, or enzyme therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walsh G. Biopharmaceutical benchmarks 2018. Nat Biotechnol. 2018;36(12):1136–47.

    CAS  PubMed  Google Scholar 

  2. Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96(1):1–26.

    CAS  PubMed  Google Scholar 

  3. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu M, Benjamin MM, Srinivasan S, Morin EE, Shishatskaya EI, Schwendeman SP, et al. Battle of GLP-1 delivery technologies. Adv Drug Deliv Rev. 2018;130:113–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Pagels RF, Prud'homme RK. Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J Control Release. 2015;219:519–35.

    CAS  PubMed  Google Scholar 

  6. Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci. 2010;99(6):2557–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: overview and perspectives. J Control Release. 2016;240:24–37.

    CAS  PubMed  Google Scholar 

  8. Zaman R, Islam RA, Ibnat N, Othman I, Zaini A, Lee CY, et al. Current strategies in extending half-lives of therapeutic proteins. J Control Release. 2019;301(January):176–89.

    CAS  PubMed  Google Scholar 

  9. Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release. 2014;190(5):240–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Teekamp N, Duque LF, Frijlink HW, Hinrichs WLJ, Olinga P. Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert Opin Drug Delivery. 2015;12(8):1311–31.

    CAS  Google Scholar 

  11. Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976;263(5580):797–800.

    CAS  PubMed  Google Scholar 

  12. Xu Q, Ensign LM, Boylan NJ, Schon A, Gong X, Yang J-C, et al. Impact of surface polyethylene glycol ( PEG ) density on biodegradable nanoparticle transport in mucus ex vivo and distribution in vivo. ACS Nano. 2015;9(9):9217–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F. Immunological principles guiding the rational design of particles for vaccine delivery. ACS Nano. 2017;11(1):54–68.

    CAS  PubMed  Google Scholar 

  14. Hajj KA, Whitehead KA. Tools for translation: non-viral materials for therapeutic mRNA delivery. Nat Rev Mater. 2017;2(10):17056.

    CAS  Google Scholar 

  15. Discher BM, Won Y, Ege D, Lee J, Bates F, Discher D, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284(5417):1143–6.

    CAS  PubMed  Google Scholar 

  16. Gregoriadis G, Ryman B. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J. 1971;124(5):58.

    Google Scholar 

  17. Ahmed F, Discher DE. Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. J Control Release. 2004;96(1):37–53.

    CAS  PubMed  Google Scholar 

  18. Tan ML, Choong PFM, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides. 2010;31(1):184–93.

    CAS  PubMed  Google Scholar 

  19. Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev. 2017;117(15):9874–906.

    CAS  PubMed  Google Scholar 

  20. Anderson PM, Hanson DC, Hasz DE, Halet MR, Blazar BR, Ochoa AC. Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-γ. Cytokine. 1994;6(1):92–101.

    CAS  PubMed  Google Scholar 

  21. Weiner A. Liposomes for protein delivery: selecting manufacturing and development processes. Immunomethods. 1994;4:201–9.

    CAS  PubMed  Google Scholar 

  22. Diwan M, Park TG. Pegylation enhances protein stability during encapsulation in PLGA microspheres. J Control Release. 2001;73(2–3):233–44.

    CAS  PubMed  Google Scholar 

  23. Paramonov SE, Bachelder EM, Beaudette TT, Standley SM, Lee CC, Dashe J, et al. Fully acid-degradable biocompatible polyacetal microparticles for drug delivery. Bioconjug Chem. 2008;19(4):911–9.

    CAS  PubMed  Google Scholar 

  24. Murthy N, Xu M, Schuck S, Kunisawa J, Shastri N, Frechet JMJ. A macromolecular delivery vehicle for protein-based vaccines: acid-degradable protein-loaded microgels. Proc Natl Acad Sci. 2003;100(9):4995–5000.

    CAS  PubMed  Google Scholar 

  25. Allen S, Osorio O, Liu YG, Scott E. Facile assembly and loading of theranostic polymersomes via multi-impingement flash nanoprecipitation. J Control Release. 2017;262(March):91–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75.

    CAS  PubMed  Google Scholar 

  27. Bilati U, Doelker E. Nanoprecipitation versus emulsion-based techniques for the encapsulation of proteins into biodegradable nanoparticles and process-related stability issues. AAPS PharmSciTech. 2005;6(4):594–604.

    Google Scholar 

  28. Bobbala S, Allen SD, Scott EA. Flash nanoprecipitation permits versatile assembly and loading of polymeric bicontinuous cubic nanospheres. Nanoscale. 2018;10(11):5078–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pagels RF, Prud’homme RK. Inverse flash nanoprecipitation for biologics encapsulation: nanoparticle formation and ionic stabilization in organic solvents. control of amphiphile self-assembling at the molecular level: supra-molecular assemblies with tuned physicochemical properties for delivery applications. ACS Symposium Series. 1271: American Chemical Society; 2017. p. 249–74.

  30. Han J, Zhu Z, Qian H, Wohl AR, Beaman CJ, Hoye TR, et al. A simple confined impingement jets mixer for flash nanoprecipitation. J Pharm Sci. 2012;101(10):4018–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Johnson BK, Prud’homme RK. Flash nanoprecipitation of organic actives and block copolymers using a confined impinging jets mixer. Aust J Chem. 2003;56:1021–4.

    CAS  Google Scholar 

  32. Johnson BK, Prud’homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Phys Rev Lett. 2003;91(11):1–4.

    Google Scholar 

  33. D'Addio SM, Prud'homme RK. Controlling drug nanoparticle formation by rapid precipitation. Adv Drug Deliv Rev. 2011;63(6):417–26.

    CAS  PubMed  Google Scholar 

  34. Markwalter CE, Pagels RF, Wilson BK, Ristroph KD, Prud'homme RK. Flash nanoprecipitation for the encapsulation of hydrophobic and hydrophilic compounds in polymeric nanoparticles. JoVE. 2019;143:e58757.

    Google Scholar 

  35. Liu Y, Cheng CY, Prud'homme RK, Fox RO. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation. Chem Eng Sci. 2008;63(11):2829–42.

    CAS  Google Scholar 

  36. Saad WS, Prud’homme RK. Principles of nanoparticle formation by flash nanoprecipitation. Nano Today. 2016;11(2):212–27.

    CAS  Google Scholar 

  37. Markwalter CE, Prud’homme RK. Design of a small-scale multi-inlet vortex mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash nanoprecipitation. J Pharm Sci. 2018;107(9):2465–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Pagels RF, Edelstein J, Tang C, Prud’homme RK. Controlling and predicting nanoparticle formation by block copolymer directed rapid precipitations. Nano Lett. 2018;18(2):1139–44.

    CAS  PubMed  Google Scholar 

  39. Hou X, Li Q, Jia L, Li Y, Zhu Y, Cao A. New preparation of structurally symmetric, biodegradable poly(L-lactide) disulfides and PLLA–stabilized, photoluminescent CdSe quantum dots. Macromol Biosci. 2009;9(6):551–62.

    CAS  PubMed  Google Scholar 

  40. Qian H, Wohl AR, Crow JT, Macosko CW, Hoye TR. A strategy for control of “random” copolymerization of lactide and glycolide: application to synthesis of PEG-b-PLGA block polymers having narrow dispersity. Macromolecules. 2011;44(18):7132–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kowalski A, Duda A, Penczek S. Polymerization of l,l-lactide initiated by aluminum isopropoxide trimer or tetramer. Macromolecules. 1998;31(7):2114–22.

    CAS  Google Scholar 

  42. Frisken BJ. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt. 2001;40(24):4087–91.

    CAS  PubMed  Google Scholar 

  43. Sauer BB, Stock RS, Lim KH, Ray WH. Polymer latex particle size measurement through high-speed dieletric spectroscopy. J Appl Polym Sci. 1990;39:2419–41.

    CAS  Google Scholar 

  44. Markwalter CE, Prud’homme RK. Inverse flash nanoprecipitation for biologics encapsulation: understanding process losses via an extraction protocol. control of amphiphile self-assembling at the molecular level: supra-molecular assemblies with tuned physicochemical properties for delivery applications. ACS Symposium Series. 1271: American Chemical Society; 2017. p. 275–96.

  45. Feng J, Markwalter CE, Tian C, Armstrong M, Prud RK. Translational formulation of nanoparticle therapeutics from laboratory discovery to clinical scale. J Transl Med. 2019;17(200).

  46. Budijono SJ, Russ B, Saad W, Adamson DH, Prud'homme RK. Block copolymer surface coverage on nanoparticles. Colloids Surf A Physicochem Eng Asp. 2010;360(1–3):105–10.

    CAS  Google Scholar 

  47. D'Addio SM, Saad W, Ansell SM, Squiers JJ, Adamson DH, Herrera-Alonso M, et al. Effects of block copolymer properties on nanocarrier protection from in vivo clearance. J Control Release. 2012;162(1):208–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Feldman RA, Fuhr R, Smolenov I, Ribeiro A, Panther L, Watson M, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine. 2019;37(25):3326–34.

    CAS  PubMed  Google Scholar 

  49. Pinkerton NM, Grandeury A, Fisch A, Brozio J, Riebesehl BU, Prud’Homme RK. Formation of stable nanocarriers by in situ ion pairing during block-copolymer-directed rapid precipitation. Mol Pharm. 2013;10(1):319–28.

    CAS  PubMed  Google Scholar 

  50. Ristroph KD, Prud'homme RK. Hydrophobic ion pairing: encapsulating small molecules, peptides, and proteins into nanocarriers. Nanoscale Adv. 2019;1(11):4207–37.

    CAS  Google Scholar 

  51. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    PubMed  Google Scholar 

  52. Kazandjian R, Dordick JS, Klibanov AM. Enzymatic analyses in organic solvents. Biotechnol Bioeng. 1986;28:417–21.

    CAS  PubMed  Google Scholar 

  53. Putney S, Burke P. Improving protein therapeutics with sustained-release formulations. Nat Biotechnol. 1998;16(10):291–4.

    Google Scholar 

  54. Giteau A, Venier-Julienne MC, Marchal S, Courthaudon JL, Sergent M, Montero-Menei C, et al. Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres. Eur J Pharm Biopharm. 2008;70(1):127–36.

    CAS  PubMed  Google Scholar 

  55. Johnston KP, Maynard JA, Truskett TM, Borwankar AU, Miller MA, Wilson BK, et al. Concentrated dispersions of equilibrium protein nanoclusters that reversibly dissociate into active monomers. ACS Nano. 2012;6(2):1357–69.

    CAS  PubMed  Google Scholar 

  56. Kruif CGD, Weinbreck F, Vries RD. Complex coacervation of proteins and anionic polysaccharides. Curr Opin Colloid Interface Sci. 2004;9:340–9.

    Google Scholar 

  57. Riley RS, June CH, Langer R, Mitchell MJ. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(March):175–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Johnson BK, Prud'homme RK. Chemical processing and micromixing in confined impinging jets. AICHE J. 2003;49(9):2264–82.

    CAS  Google Scholar 

  59. Johnson BK, Prud’homme RK. Mechanism for rapid self-assembly of block copolymer nanoparticles. Physical Review Letters. 2003;91(11).

Download references

Acknowledgments

The authors wish to thank Dr. Simon McManus, Brian Wilson, and Kurt Ristroph for the helpful discussions. Kurt Ristroph provided MATLAB code used in the analysis of SEC data. Circular dichroism spectra were collected in the Princeton Dept. of Chemistry Biophysics Core Facility. Funding was provided by Optimeos Life Sciences, in which RFP and RKP have a financial interest, by the Helen Shipley Hunt Fund, and by the Industrial Innovation Fund of Princeton University. CEM was partially funded by a PhRMA Foundation Pre-Doctoral Fellowship in Pharmaceutics. The authors acknowledge the use of Princeton’s Imaging and Analysis Center, which is partially supported by the Princeton Center for Complex Materials, a National Science Foundation (NSF)-MRSEC program (DMR-1420541). The authors thank Brian Wilson for his assistance in staining particles for TEM imaging. We also acknowledge the support of Howard Bowman of Evonik Corporation for supplying the PLA-b-PEG polymers.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Robert K. Prud’homme.

Ethics declarations

Conflict of Interest

RKP and RFP have financial interest in Optimeos Life Sciences.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markwalter, C.E., Pagels, R.F., Hejazi, A.N. et al. Polymeric Nanocarrier Formulations of Biologics Using Inverse Flash NanoPrecipitation. AAPS J 22, 18 (2020). https://doi.org/10.1208/s12248-019-0405-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0405-z

KEY WORDS

Navigation