Skip to main content
Log in

An Investigation into the Factors Governing Drug Absorption and Food Effect Prediction Based on Data Mining Methodology

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Drug absorption is a complex process governed by a number of interrelated physicochemical, biopharmaceutical, and pharmacokinetic factors. In order to explore complex relationships among these factors, multivariate exploratory analysis was performed on the dataset of drugs with diverse bioperformance. The investigated dataset included subset of drugs for which bioequivalence between solid dosage form and oral solution has been reported, and subset of drugs described in the literature as low solubility/low permeability compounds. Discriminatory power of hierarchical clustering on principal components was somewhat higher when applied on the data subsets of drugs with similar bioperformance, while analysis of the integrated dataset indicated existence of two groups of drugs with the boundaries reflected in Peff value of approximately 2 × 10−4 cm/s and Fa and Fm values higher than 85% and 50%, respectively. Majority of the investigated drugs within the integrated dataset were grouped within their initial subset indicating that overall drug bioperformance is closely related to its physicochemical, biopharmaceutical and pharmacokinetic properties. Classification models constructed using the random forest (RF) and support vector machine with polynomial kernel function were able to predict food effect based on drug dose/solubility ratio (D/S), effective permeability (Peff), percent of dose metabolized (Fm), and elimination half-life (τ1/2). Although both models performed well during training and testing, only RF kept satisfying performance when applied on the external dataset (kappa value > 0.4). The results obtained indicate that data mining can be employed as useful tool in biopharmaceutical drug characterization which merits further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caspari C. A Treatise on pharmacy for students and pharmacists.Philadelphia: Lea Brothers & Company; 1895.

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1-3):3–25.

    Article  CAS  Google Scholar 

  3. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20.

    Article  CAS  PubMed  Google Scholar 

  4. Burton PS, Goodwin JT, Vidmar TJ, Amore BM. Predicting drug absorption: how nature made it a difficult problem. J Pharmacol Exp Ther. 2002;303(3):889–95.

    Article  CAS  PubMed  Google Scholar 

  5. Kaplan S. Biological implications of in vitro dissolution testing. In: Leeson L, Cartensen JT, editors. Dissolution Technology. Washington DC: The Industrial Pharmaceutical Technology Section of Pharmaceutical Sciences; 1974. p. 167.

    Google Scholar 

  6. Sugano K. Theoretical investigation of dissolution test criteria for waiver of clinical bioequivalence study. J Pharm Sci. 2016;105(6):1947–51.

    Article  CAS  PubMed  Google Scholar 

  7. Lennernas H. Intestinal permeability and its relevance for absorption and elimination. Xenobiotica. 2007;37(10-11):1015–51.

    Article  CAS  PubMed  Google Scholar 

  8. Dahan A, Miller JM. The solubility–permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012;14(2):244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Butler J, Hens B, Vertzoni M, Brouwers J, Berben P, Dressman J, et al. In vitro models for the prediction of in vivo performance of oral dosage forms: recent progress from partnership through the IMI OrBiTo collaboration. Eur J Pharm Biopharm. 2019;136:70–83.

    Article  CAS  PubMed  Google Scholar 

  10. Vertzoni M, Augustijns P, Grimm M, Koziolek M, Lemmens G, Parrott N, et al. Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. Eur J Pharmacol. 2019;134:153–75.

    Article  CAS  Google Scholar 

  11. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic food-drug interactions–a perspective from the UNGAP group. Eur J Pharmacol. 2019;134:31–59.

    Article  CAS  Google Scholar 

  12. Ghadi R, Dand N. BCS class IV drugs: highly notorious candidates for formulation development. J Control Release. 2017;248:71–95.

    Article  CAS  PubMed  Google Scholar 

  13. Martinez MN, Amidon GL. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J Clin Pharmacol. 2002;42(6):620–43.

    Article  CAS  PubMed  Google Scholar 

  14. Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22(1):11–23.

    Article  CAS  PubMed  Google Scholar 

  15. Pham-The H, Garrigues T, Bermejo M, Gonzalez-Alvarez I, Monteagudo MC, Cabrera-Perez MA. Provisional classification and in silico study of biopharmaceutical system based on caco-2 cell permeability and dose number. Mol Pharm. 2013;10(6):2445–61.

    Article  CAS  PubMed  Google Scholar 

  16. Newby D, Freitas AA, Ghafourian T. Comparing multilabel classification methods for provisional biopharmaceutics class prediction. Mol Pharm. 2014;12(1):87–102.

    Article  PubMed  CAS  Google Scholar 

  17. Chatzizacharia K, Hatziavramidis D. New frames of reference for mapping drugs in the four classes of the BCS and BDDCS into regions with clear boundaries. AICHE J. 2015;61(11):3570–9.

    Article  CAS  Google Scholar 

  18. Daousani C, Macheras P, Karalis V.Understanding the linkage between pharmacokinetic properties and the two classification systems: BCS and BDDCS. AAPS Annual Meeting and Exposition 2016; Denver, CO.

  19. Gatarić B, Parojčić J. Application of data mining approach to identify drug subclasses based on solubility and permeability. Biopharm Drug Dispos. 2019;40(2):51–61.

    Article  PubMed  CAS  Google Scholar 

  20. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 2018;47(D1):D1102–D9.

    Article  PubMed Central  Google Scholar 

  21. Ursu O, Holmes J, Knockel J, Bologa CG, Yang JJ, Mathias SL, et al. DrugCentral: online drug compendium. Nucleic Acids Res. 2016;45(D):D932–9.

    PubMed  PubMed Central  Google Scholar 

  22. Newby D, Freitas AA, Ghafourian T. Decision trees to characterise the roles of permeability and solubility on the prediction of oral absorption. Eur J Med Chem. 2015;90:751–65.

    Article  CAS  PubMed  Google Scholar 

  23. Benet LZ, Hosey CM, Ursu O, Oprea TI. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2016;101:89–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brune K.Pharmacokinetics of azapropazone in comparison to other NSAIDs.In: Rainsford KD, editor. Azapropazone.Dordrecht: Kluwer Academic;1989.p.53-61.

  25. Larregieu C, Benet L. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery. Mol Pharm. 2014;11(4):1335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beermann B, Groschinsky-Grind M. Clinical pharmacokinetics of diuretics. Clin Pharmacokinet. 1980;5(3):221–45.

    Article  CAS  PubMed  Google Scholar 

  27. Rinaki E, Valsami G, Macheras P. Quantitative biopharmaceutics classification system: The central role of dose/solubility ratio. Pharm Res. 2003;20(12):1917–25.

    Article  CAS  PubMed  Google Scholar 

  28. Rinaki E, Dokoumetzidis A, Macheras P. The mean dissolution time depends on the dose/solubility ratio. Pharm Res. 2003;20(3):406–8.

    Article  CAS  PubMed  Google Scholar 

  29. Macheras P, Karalis V, Valsami G. Keeping a critical eye on the science and the regulation of oral drug absorption: a review. J Pharm Sci. 2013;102(9):3018–36.

    Article  CAS  PubMed  Google Scholar 

  30. Jolliffe IT. Principal component analysis. 2005.

    Google Scholar 

  31. Husson F, Josse J, Pages J. Principal component methods-hierarchical clustering-partitional clustering: why would we need to choose for visualizing data?.In: Technical report-Agro campus. Applied Mathematics Department. 2010. http://factominer.free.fr/more/HCPC_husson_josse.pdf. Accessed 20 Aug 2019.

  32. Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25(1):1–18.

    Article  Google Scholar 

  33. Kassambara A, Mundt F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0. 5., 2017.

  34. Kuhn M, Wind J, Weston S, Williams A, Keefer C, Engelhardt A, et al. caret: Classification and regression training. R package ver. 6.0–84. 2019.

  35. Branco P, Ribeiro RP, Torgo L. UBL: an R package for utility-based learning. arXiv preprint arXiv:160408079. 2016.

  36. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics.1977;33(1):159–74.

    Article  CAS  PubMed  Google Scholar 

  37. Kuhn M. Variable importance using the caret package. 2012.

    Google Scholar 

  38. Ohashi R, Watanabe R, Esaki T, Taniguchi T, Torimoto-Katori N, et al. Development of simplified in vitro P-glycoprotein substrate assay and in silico prediction models to evaluate transport potential of P-glycoprotein. Mol Pharm. 2019;16(5):1851–63.

    Article  CAS  PubMed  Google Scholar 

  39. Sakiyama Y, Yuki H, Moriya T, Hattori K, Suzuki M, Shimada K, et al. Predicting human liver microsomal stability with machine learning techniques. J Mol Graph Model. 2008;26(6):907–15.

    Article  CAS  PubMed  Google Scholar 

  40. Chen M-L, Yu L. The use of drug metabolism for prediction of intestinal permeability. Mol Pharm. 2009;6(1):74–81.

    Article  CAS  PubMed  Google Scholar 

  41. Macheras P, Karalis V. A non-binary biopharmaceutical classification of drugs: the ABΓ system. Int J Pharm. 2014;464(1-2):85–90.

    Article  CAS  PubMed  Google Scholar 

  42. Gu C-H, Li H, Levons J, Lentz K, Gandhi RB, Raghavan K, et al. Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res. 2007;24(6):1118–30.

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Zhao P, Pan Y, Wagner C. Predictive performance of physiologically based pharmacokinetic models for the effect of food on oral drug absorption: current status. CPT Pharmacometrics Syst Pharmacol. 2018;7(2):82–9.

    Article  CAS  PubMed  Google Scholar 

  44. Custodio JM, Wu C-Y, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Deliv Rev. 2008;60(6):717–33.

    Article  CAS  PubMed  Google Scholar 

  45. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. Drug, Meal and formulation interactions infulencing drug absorpion after oral administration. Clin Pharmacokinet. 1999;36(3):233–54.

    Article  CAS  PubMed  Google Scholar 

  46. Carver PL, Fleisher D, Zhou SY, Kaul D, Kazanjian P, Li C. Meal composition effects on the oral bioavailability of indinavir in HIV-infected patients. Pharm Res. 1999;16(5):718–24.

    Article  CAS  PubMed  Google Scholar 

  47. Pabla D, Akhlaghi F, Zia H. Intestinal permeability enhancement of levothyroxine sodium by straight chain fatty acids studied in MDCK epithelial cell line. Eur J Pharmacol. 2010;40(5):466–72.

    Article  CAS  Google Scholar 

  48. Liedholm H, Melander A. Concomitant food intake can increase the bioavailability of propranolol by transient inhibition of its presystemic primary conjugation. Clin Pharmacol Ther. 1986;40(1):29–36.

    Article  CAS  PubMed  Google Scholar 

  49. Melander A, Danielson K, Schersten B, Wåhlin E. Enhancement of the bioavailability of propranolol and metoprolol by food. Clin Pharmacol Ther. 1977;22(1):108–12.

    Article  CAS  PubMed  Google Scholar 

  50. Butler JM, Dressman JB. The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci. 2010;99(12):4940–54.

    Article  CAS  PubMed  Google Scholar 

  51. Williams L, Davis JA, Lowenthal DT. The influence of food on the absorption and metabolism of drugs. Med Clin North Am. 1993;77(4):815–29.

    Article  CAS  PubMed  Google Scholar 

  52. Beermann B, Groschinsky-Grind M. Gastrointestinal absorption of hydrochlorothiazide enhanced by concomitant intake of food. Eur J Clin Pharmacol. 1978;13(2):125–8.

    Article  CAS  PubMed  Google Scholar 

  53. Barbhaiya RH, Craig WA, Corrick-West HP, Welling PG. Pharmacokinetics of hydrochlorothiazide in fasted and nonfasted subjects: a comparison of plasma level and urinary excretion methods. J Pharm Sci. 1982;71(2):245–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the project no. TR 34007, funded by the Ministry of Education, Science and Technological Development, Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biljana Gatarić.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 52.5 kb)

ESM 2

(DOCX 44.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatarić, B., Parojčić, J. An Investigation into the Factors Governing Drug Absorption and Food Effect Prediction Based on Data Mining Methodology. AAPS J 22, 11 (2020). https://doi.org/10.1208/s12248-019-0394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0394-y

KEY WORDS

Navigation