Skip to main content

Advertisement

Log in

Antibody Coadministration as a Strategy to Overcome Binding-Site Barrier for ADCs: a Quantitative Investigation

  • Research Article
  • Theme: Systems Pharmacokinetics Models for Antibody-Drug Conjugates
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

It has been proposed that the binding-site barrier (BSB) for antibody-drug conjugates (ADCs) can be overcome with the help of antibody coadministration. However, broad utility of this strategy remains in question. Consequently, here, we have conducted in vivo experiments and pharmacokinetics-pharmacodynamics (PK-PD) modeling and simulation (M&S) to further evaluate the antibody coadministration hypothesis in a quantitative manner. Two different Trastuzumab-based ADCs, T-DM1 (no bystander effect) and T-vc-MMAE (with a bystander effect), were evaluated in high-HER2 (N87) and low-HER2 (MDA-MB-453) expressing tumors, with or without the coadministration of 1, 3, or 8-fold higher Trastuzumab. The tumor growth inhibition (TGI) data was quantitatively characterized using a semi-mechanistic PK-PD model to determine the nature of drug interaction for each coadministration regimen, by estimating the interaction parameter ψ. It was found that the coadministration strategy improved ADC efficacy under certain conditions and had no impact on ADC efficacy in others. The benefit was more pronounced for N87 tumors with very high antigen expression levels where the effect on treatment was synergistic (a synergistic drug interaction, ψ = 2.86 [2.6–3.12]). The benefit was diminished in tumor with lower antigen expression (MDA-MB-453) and payload with bystander effect. Under these conditions, the coadministration regimens resulted in an additive or even less than additive benefit (ψ ≤ 1). As such, our results suggest that while antibody coadministration may be helpful for ADCs in certain circumstances, one should not broadly apply this strategy to all the scenarios without first identifying the costs and benefits of this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh AP, Maass KF, Betts AM, Wittrup KD, Kulkarni C, King LE, et al. Evolution of antibody- drug conjugate tumor disposition model to predict preclinical tumor pharmacokinetics of Trastuzumab-emtansine (T-DM1). AAPS J. 2016;18(4):861–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Teicher BA. Antibody drug conjugates. Curr Opin Oncol. 2014;26(5):476–83.

    CAS  PubMed  Google Scholar 

  3. Teicher BA, Chari RV. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17(20):6389–97.

    CAS  PubMed  Google Scholar 

  4. Schumacher D, Hackenberger CP, Leonhardt H, Helma J. Current status: site-specific antibody drug conjugates. J Clin Immunol. 2016;36(Suppl 1):100–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mistri F. Where do ADCs sit in the clinical landscape? Comparison of ADCs with current standard of care: World ADC 2017, Berlin; 2017.

  6. Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM. Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 2016;18(5):1117–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pak Y, Pastan I, Kreitman RJ, Lee B. Effect of antigen shedding on targeted delivery of immunotoxins in solid tumors from a mathematical model. PLoS One. 2014;9(10):e110716.

    PubMed  PubMed Central  Google Scholar 

  8. Pak Y, Zhang Y, Pastan I, Lee B. Antigen shedding may improve efficiencies for delivery of antibody-based anticancer agents in solid tumors. Cancer Res. 2012;72(13):3143–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Oldham RK, Foon KA, Morgan AC, Woodhouse CS, Schroff RW, Abrams PG, et al. Monoclonal antibody therapy of malignant melanoma: in vivo localization in cutaneous metastasis after intravenous administration. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. n. 1984;2(11):1235–44.

    CAS  Google Scholar 

  10. Schroff RW, Morgan AC Jr, Woodhouse CS, Abrams PG, Farrell MM, Carpenter BE, et al. Monoclonal antibody therapy in malignant melanoma: factors effecting in vivo localization. J Biol Response Mod. 1987;6(4):457–72.

    CAS  PubMed  Google Scholar 

  11. Schroff RW, Woodhouse CS, Foon KA, Oldham RK, Farrell MM, Klein RA, et al. Intratumor localization of monoclonal antibody in patients with melanoma treated with antibody to a 250,000-dalton melanoma-associated antigen. J Natl Cancer Inst. 1985;74(2):299–306.

    CAS  PubMed  Google Scholar 

  12. Eary JF, Schroff RW, Abrams PG, Fritzberg AR, Morgan AC, Kasina S, et al. Successful imaging of malignant melanoma with technetium-99m-labeled monoclonal antibodies. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 1989;30(1):25–32.

    CAS  Google Scholar 

  13. Del Vecchio S, Reynolds JC, Carrasquillo JA, Blasberg RG, Neumann RD, Lotze MT, et al. Local distribution and concentration of intravenously injected 131I-9.2.27 monoclonal antibody in human malignant melanoma. Cancer Res. 1989;49(10):2783–9.

    PubMed  Google Scholar 

  14. Houghton AN, Mintzer D, Cordon-Cardo C, Welt S, Fliegel B, Vadhan S, et al. Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci U S A. 1985;82(4):1242–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Murray J, Rosenblum M, Zhang H, Podoloff D, Kasi L, Curley S, et al. Comparative tumor localization of whole immunoglobulin G anticarcinoembryonic antigen monoclonal antibodies IMMU-4 and IMMU-4 F(ab′)2 in colorectal cancer patients. Cancer. 1994;73(3):850s-7.

    Google Scholar 

  16. Elias DJ, Hirschowitz L, Kline LE, Kroener JF, Dillman RO, Walker LE, et al. Phase I clinical comparative study of monoclonal antibody KS1/4 and KS1/4-methotrexate immunconjugate in patients with non-small cell lung carcinoma. Cancer Res. 1990;50(13):4154–9.

    CAS  PubMed  Google Scholar 

  17. Oosterwijk E, Bander NH, Divgi CR, Welt S, Wakka JC, Finn RD, et al. Antibody localization in human renal cell carcinoma: a phase I study of monoclonal antibody G250. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1993;11(4):738–50.

    CAS  Google Scholar 

  18. Scott AM, Lee FT, Jones R, Hopkins W, MacGregor D, Cebon JS, et al. A phase I trial of humanized monoclonal antibody A33 in patients with colorectal carcinoma: Biodistribution, pharmacokinetics, and quantitative tumor uptake. Clinical Cancer Research. 2005;11(13):4810–7.

    CAS  PubMed  Google Scholar 

  19. Singh AP, Shah DK. Utility of PK-PD Modeling and simulation to improve decision making for antibody-drug conjugate development. In: Damelin M, editor. Innovations for next-generation antibody-drug conjugates. Cham: Humana Press; 2018. p. 73–97.

    Google Scholar 

  20. Singh AP, Shin YG, Shah DK. Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res. 2015;32(11):3508–25.

    CAS  PubMed  Google Scholar 

  21. Cilliers C, Menezes B, Nessler I, Linderman J, Thurber GM. Improved tumor penetration and single-cell targeting of antibody-drug conjugates increases anticancer efficacy and host survival. Cancer Res. 2018;78(3):758–68.

    CAS  PubMed  Google Scholar 

  22. Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn. 2016;43(6):567–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Koch G, Walz A, Lahu G, Schropp J. Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn. 2009;36(2):179–97.

    CAS  PubMed  Google Scholar 

  24. Barok M, Tanner M, Koninki K, Isola J. Trastuzumab-DM1 causes tumour growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res. 2011;13(2):R46.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh AP, Shah DK. Measurement and mathematical characterization of cell-level pharmacokinetics of antibody-drug conjugates: a case study with Trastuzumab-vc-MMAE. Drug Metab Dispos. 2017;45(11):1120–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Singh AP, Shah DK. Application of a PK-PD modeling and simulation-based strategy for clinical translation of antibody-drug conjugates: a case study with Trastuzumab emtansine (T-DM1). AAPS J. 2017;19(4):1054–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shah DK, Haddish-Berhane N, Betts A. Bench to bedside translation of antibody drug conjugates using a multiscale mechanistic PK/PD model: a case study with brentuximab-vedotin. J Pharmacokinet Pharmacodyn. 2012;39(6):643–59.

    PubMed  Google Scholar 

  28. Shah DK, King LE, Han X, Wentland JA, Zhang Y, Lucas J, et al. A priori prediction of tumor payload concentrations: preclinical case study with an auristatin-based anti-5T4 antibody-drug conjugate. AAPS J. 2014;16(3):452–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haddish-Berhane N, Shah DK, Ma D, Leal M, Gerber HP, Sapra P, et al. On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: a PK/PD approach. J Pharmacokinet Pharmacodyn. 2013;40(5):557–71.

    CAS  PubMed  Google Scholar 

  30. Yang J, Mager DE, Straubinger RM. Comparison of two pharmacodynamic transduction models for the analysis of tumor therapeutic responses in model systems. AAPS J. 2010;12(1):1–10.

    CAS  PubMed  Google Scholar 

  31. Chan PL, Jacqmin P, Lavielle M, McFadyen L, Weatherley B. The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects. J Pharmacokinet Pharmacodyn. 2011;38(1):41–61.

    PubMed  Google Scholar 

  32. Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, et al. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clinical cancer research : an official journal of the American Association for Cancer Research. 2011;17(15):5060–70.

    CAS  Google Scholar 

  33. Yamashita-Kashima Y, Shu S, Harada N, Fujimoto-Ouchi K. Enhanced antitumor activity of trastuzumab emtansine (T-DM1) in combination with pertuzumab in a HER2-positive gastric cancer model. Oncology reports. 2013;30(3):1087–93.

    CAS  PubMed  Google Scholar 

  34. Muchekehu R, Liu D, Horn M, Campbell L, Del Rosario J, Bacica M, et al. The effect of molecular weight, PK, and valency on tumor biodistribution and efficacy of antibody-based drugs. Transl Oncol. 2013;6(5):562–72.

    PubMed  PubMed Central  Google Scholar 

  35. Adams G, Schier R, McCall A, Simmons H, Horak E, Alpaugh K, et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Research. 2001;61:4750–5.

    CAS  PubMed  Google Scholar 

  36. Thurber GM, Wittrup KD. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Research. 2008;68:3334–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Abuqayyas L. Evaluation of the mechanistic determinants of antibody exposure in tissues. Buffalo: State University of New York at Buffalo; 2012.

    Google Scholar 

  38. Baker J, Lindquist K, Huxham L, Kyle A, Sy J, Minchinton A. Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clinical Cancer Research. 2008;14(7):2171–9.

    CAS  PubMed  Google Scholar 

  39. Baker JHE, Kyle AH, Reinsberg SA, Moosvi F, Patrick HM, Cran J, et al. Heterogeneous distribution of trastuzumab in HER2-positive xenografts and metastases: role of the tumor microenvironment. Clinical & experimental metastasis. 2018.

  40. Khera E, Cilliers C, Bhatnagar S, Thurber G. Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy. Mol Syst Des Eng. 2018.

  41. Blumenthal RD, Fand I, Sharkey RM, Boerman OC, Kashi R, Goldenberg DM. The effect of antibody protein dose on the uniformity of tumor distribution of radioantibodies - an autoradiographic study. Cancer Immunol Immunother. 1991;33(6):351–8.

    CAS  PubMed  Google Scholar 

  42. Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60(12):1421–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kwan BH, Zhu EF, Tzeng A, Sugito HR, Eltahir AA, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. The Journal of experimental medicine. 2017;214(6):1679–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Cao Y, Jusko WJ. Incorporating target-mediated drug disposition in a minimal physiologically- based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2014;41(4):375–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Mager DE. Target-mediated drug disposition and dynamics. Biochemical Pharmacology. 2006;72(1):1–10.

    CAS  PubMed  Google Scholar 

  46. Boswell CA, Mundo EE, Zhang C, Stainton SL, Yu SF, Lacap JA, et al. Differential effects of predosing on tumor and tissue uptake of an 111In-labeled anti-TENB2 antibody-drug conjugate. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2012;53(9):1454–61.

    CAS  Google Scholar 

  47. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10(20):7063–70.

    CAS  Google Scholar 

  48. Sharma SK, Pourat J, Abdel-Atti D, Carlin SD, Piersigilli A, Bankovich AJ, et al. Noninvasive interrogation of DLL3 expression in metastatic small cell lung cancer. Cancer Res. 2017;77(14):3931–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Maass KF, Kulkarni C, Quadir MA, Hammond PT, Betts AM, Wittrup KD. A flow cytometric clonogenic assay reveals the single-cell potency of doxorubicin. J Pharm Sci. 2015.

  50. Goldenberg DM, Cardillo TM, Govindan SV, Rossi EA, Sharkey RM. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget. 2015;6(26):22496–512.

    PubMed  PubMed Central  Google Scholar 

  51. Leyland-Jones B, Colomer R, Trudeau ME, Wardley A, Latreille J, Cameron D, et al. Intensive loading dose of trastuzumab achieves higher-than-steady-state serum concentrations and is well tolerated. J Clin Oncol. 2010;28(6):960–6.

    CAS  PubMed  Google Scholar 

  52. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast cancer research : BCR. 2014;16(2):209.

    PubMed  Google Scholar 

  53. Hamblett KJ, Jacob AP, Gurgel JL, Tometsko ME, Rock BM, Patel SK, et al. SLC46A3 Is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res. 2015;75(24):5329–40.

    CAS  PubMed  Google Scholar 

  54. Nessler I, Khera E, Thurber GM. Quantitative pharmacology in antibody-drug conjugate development: armed antibodies or targeted small molecules? Oncoscience. 2018;5(5-6):161–3.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Authors would also like to thank Zhe Li and Farah Al Qaraqhuli for their technical help during TGI studies, and Cornelius Cilliers for helpful comments on the manuscript.

Funding

This work was financially supported by the Centre for Protein Therapeutics at University at Buffalo. D.K.S is supported by NIH grant GM114179 and AI138195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval K. Shah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Guest Editor: Dhaval K. Shah

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.P., Guo, L., Verma, A. et al. Antibody Coadministration as a Strategy to Overcome Binding-Site Barrier for ADCs: a Quantitative Investigation. AAPS J 22, 28 (2020). https://doi.org/10.1208/s12248-019-0387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0387-x

KEY WORDS

Navigation