Skip to main content

Advertisement

Log in

Investigation of the Influence of Protein-Losing Enteropathy on Monoclonal Antibody Pharmacokinetics in Mice

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Protein losing enteropathy (PLE), which is characterized by substantial loss of plasma proteins into the gastrointestinal (GI) tract, is a complication of a variety of GI diseases, including inflammatory bowel disease. Clinical studies have found that the clearance of monoclonal antibodies (mAb) is often increased in subjects with diseases known to cause PLE; however, direct relationships between PLE and mAb pharmacokinetics have not been demonstrated. This study employed a murine model of colitis to examine the influence of PLE on mAb pharmacokinetics. Mice were given dextran sodium sulfate (DSS, 2% w/v) supplemented tap water as drinking source for 6 days to induce colitis and PLE. Mice were then intravenously injected with 8C2, a murine IgG1 mAb. 8C2 plasma concentrations were measured up to 14 days post injection. Fecal alpha-1-antitrypsin (A1AT) clearance was measured as biomarker for PLE. DSS-treated mice developed PLE of clinically relevant severity. They also showed a transient increase in 8C2 plasma clearance and a decrease in 8C2 plasma exposure. The area under the 8C2 plasma concentration-time curve for the length of the study (AUC0-14d) reduced from 1368 ± 255 to 594 ± 224 day μg/ml following DSS treatment (p = 0.001). A quantitative relationship between A1AT clearance and 8C2 clearance was obtained via population pharmacokinetic modeling. DSS treatment substantially increased 8C2 clearance and reduced 8C2 exposure. Increased mAb plasma clearance was highly correlated with A1AT fecal clearance, suggesting the possible utility of A1AT fecal clearance as a mechanistic biomarker to predict the pharmacokinetics of therapeutic antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reichert JM. Metrics for antibody therapeutics development. MAbs. 2010;2(6):695–700.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  CAS  PubMed  Google Scholar 

  4. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59.

    Article  CAS  PubMed  Google Scholar 

  5. Beeken WL, Busch HJ, Sylwester DL. Intestinal protein loss in Crohn’s disease. Gastroenterology. 1972;62(2):207–15.

    CAS  PubMed  Google Scholar 

  6. Nakatani N. Quantitative study of serum protein loss into the alimentary tract in patients with gastric cancer. Nihon Shokakibyo Gakkai Zasshi. 1994;91(9):1391–8.

    CAS  PubMed  Google Scholar 

  7. Chiu NT, Lee BF, Hwang SJ, Chang JM, Liu GC, Yu HS. Protein-losing enteropathy: diagnosis with (99m)Tc-labeled human serum albumin scintigraphy. Radiology. 2001;219(1):86–90.

    Article  CAS  PubMed  Google Scholar 

  8. Ungaro R, Babyatsky MW, Zhu H, Freed JS. Protein-losing enteropathy in ulcerative colitis. Case Rep Gastroenterol. 2012;6(1):177–82.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zheng W, Tian X, Li L, Jing H, Li F, Zeng X, et al. Protein-losing enteropathy in systemic lupus erythematosus: analysis of the clinical features of fifteen patients. J Clin Rheumatol. 2007;13(6):313–6.

    Article  PubMed  Google Scholar 

  10. Glass GB, Ishimori A. Passage of serum albumin into the stomach. Its detection by paper electrophoresis of gastric juice in protein-losing gastropathies and gastric cancer. Am J Dig Dis. 1961;6(2):103–33.

    Article  CAS  PubMed  Google Scholar 

  11. Kapel N, Meillet D, Favennec L, Magne D, Raichvarg D, Gobert JG. Evaluation of intestinal clearance and faecal excretion of alpha 1-antiproteinase and immunoglobulins during Crohn’s disease and ulcerative colitis. Eur J Clin Chem Clin Biochem. 1992;30(4):197–202.

    CAS  PubMed  Google Scholar 

  12. Choudari CP, O’Mahony S, Brydon G, Mwantembe O, Ferguson A. Gut lavage fluid protein concentrations: objective measures of disease activity in inflammatory bowel disease. Gastroenterology. 1993;104(4):1064–71.

    Article  CAS  PubMed  Google Scholar 

  13. Fasanmade AA, Adedokun OJ, Ford J, Hernandez D, Johanns J, Hu C, et al. Population pharmacokinetic analysis of infliximab in patients with ulcerative colitis. Eur J Clin Pharmacol. 2009;65(12):1211–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM. Pharmacokinetic properties of infliximab in children and adults with Crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33(7):946–64.

    Article  CAS  PubMed  Google Scholar 

  15. Kavanaugh A, St Clair EW, McCune WJ, Braakman T, Lipsky P. Chimeric anti-tumor necrosis factor-alpha monoclonal antibody treatment of patients with rheumatoid arthritis receiving methotrexate therapy. J Rheumatol. 2000;27(4):841–50.

    CAS  PubMed  Google Scholar 

  16. Xu Z, Seitz K, Fasanmade A, Ford J, Williamson P, Xu W, et al. Population pharmacokinetics of infliximab in patients with ankylosing spondylitis. J Clin Pharmacol. 2008;48(6):681–95.

    Article  CAS  PubMed  Google Scholar 

  17. Cosson VF, Ng VW, Lehle M, Lum BL. Population pharmacokinetics and exposure-response analyses of trastuzumab in patients with advanced gastric or gastroesophageal junction cancer. Cancer Chemother Pharmacol. 2014;73(4):737–47.

    Article  CAS  PubMed  Google Scholar 

  18. Han K, Jin J, Maia M, Lowe J, Sersch MA, Allison DE. Lower exposure and faster clearance of bevacizumab in gastric cancer and the impact of patient variables: analysis of individual data from AVAGAST phase III trial. AAPS J. 2014;16(5):1056–63.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kang Y-K, Rha SY, Tassone P, Barriuso J, Yu R, Szado T, et al. A phase IIa dose-finding and safety study of first-line pertuzumab in combination with trastuzumab, capecitabine and cisplatin in patients with HER2-positive advanced gastric cancer. Br J Cancer. 2014;111(4):660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fasanmade AA, Adedokun OJ, Olson A, Strauss R, Davis HM. Serum albumin concentration: a predictive factor of infliximab pharmacokinetics and clinical response in patients with ulcerative colitis. Int J Clin Pharmacol Ther. 2010;48(5):297–308.

    Article  CAS  PubMed  Google Scholar 

  21. Lu J-F, Bruno R, Eppler S, Novotny W, Lum B, Gaudreault J. Clinical pharmacokinetics of bevacizumab in patients with solid tumors. Cancer Chemother Pharmacol. 2008;62(5):779–86.

    Article  CAS  PubMed  Google Scholar 

  22. Garg A, Quartino A, Li J, Jin J, Wada DR, Li H, et al. Population pharmacokinetic and covariate analysis of pertuzumab, a HER2-targeted monoclonal antibody, and evaluation of a fixed, non-weight-based dose in patients with a variety of solid tumors. Cancer Chemother Pharmacol. 2014;74(4):819–29.

    Article  CAS  PubMed  Google Scholar 

  23. Strygler B, Nicar MJ, Santangelo WC, Porter JL, Fordtran JS. Alpha 1-antitrypsin excretion in stool in normal subjects and in patients with gastrointestinal disorders. Gastroenterology. 1990;99(5):1380–7.

    Article  CAS  PubMed  Google Scholar 

  24. Umar SB, DiBaise JK. Protein-losing enteropathy: case illustrations and clinical review. Am J Gastroenterol. 2010;105(1):43–9. quiz 50

    Article  PubMed  Google Scholar 

  25. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, D.C.: National Academies Press; 2011. p. 220.

  26. Chen J, Balthasar JP. Development and characterization of high-affinity anti-Topotecan IgG and fab fragments. In: Gad SC, editor. Handbook of pharmaceutical biotechnology. Hoboken: Wiley; 2007. p. 835–50.

    Chapter  Google Scholar 

  27. Shah DK, Balthasar JP. PK/TD modeling for prediction of the effects of 8C2, an anti-topotecan mAb, on topotecan-induced toxicity in mice. Int J Pharm. 2014;465(1–2):228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernier JJ, Florent C, Desmazures C, Aymes C, L’Hirondel C. Diagnosis of protein-losing enteropathy by gastrointestinal clearance of Alpha1-antitrypsin. Lancet. 1978;2(8093):763–4.

    Article  CAS  PubMed  Google Scholar 

  29. Bode L, Freeze HH. Applied glycoproteomics—approaches to study genetic-environmental collisions causing protein-losing enteropathy. Biochim Biophys Acta. 2006;1760(4):547–59.

    Article  CAS  PubMed  Google Scholar 

  30. Karbach U, Ewe K, Bodenstein H. Alpha 1-antitrypsin, a reliable endogenous marker for intestinal protein loss and its application in patients with Crohn’s disease. Gut. 1983;24(8):718–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benet LZ, Galeazzi RL. Noncompartmental determination of the steady-state volume of distribution. J Pharm Sci. 1979;68(8):1071–4.

    Article  CAS  PubMed  Google Scholar 

  32. Hansen RJ, Balthasar JP. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. Thromb Haemost. 2002;88(6):898–9.

    CAS  PubMed  Google Scholar 

  33. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110.

    CAS  PubMed  Google Scholar 

  34. Engler FA, Zheng B, Balthasar JP. Investigation of the influence of nephropathy on monoclonal antibody disposition: a pharmacokinetic study in a mouse model of diabetic nephropathy. Pharm Res. 2014;31(5):1185–93.

    Article  CAS  PubMed  Google Scholar 

  35. Junghans RP. Finally! The Brambell receptor (FcRB). Mediator of transmission of immunity and protection from catabolism for IgG. Immunol Res. 1997;16(1):29–57.

    Article  CAS  PubMed  Google Scholar 

  36. McGuckin MA, Eri R, Simms LA, Florin THJ, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis. 2009;15(1):100–13.

    Article  PubMed  Google Scholar 

  37. Lencer WI. Patching a leaky intestine. N Engl J Med. 2008;359(5):526–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mankertz J, Schulzke J-D. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol. 2007;23(4):379–83.

    Article  CAS  PubMed  Google Scholar 

  39. Takeda H, Ishihama K, Fukui T, Fujishima S, Orii T, Nakazawa Y, et al. Significance of rapid turnover proteins in protein-losing gastroenteropathy. Hepato-Gastroenterology. 2003;50(54):1963–5.

    CAS  PubMed  Google Scholar 

  40. Florent C, L’Hirondel C, Desmazures C, Aymes C, Bernier JJ. Intestinal clearance of alpha 1-antitrypsin. A sensitive method for the detection of protein-losing enteropathy. Gastroenterology. 1981;81(4):777–80.

    CAS  PubMed  Google Scholar 

  41. Minnich M, Kueppers F, James H. Alpha-1-antitrypsin from mouse serum isolation and characterization. Comp Biochem Physiol B. 1984;78(2):413–9.

    Article  CAS  PubMed  Google Scholar 

  42. Crossley JR, Elliott RB. Simple method for diagnosing protein-losing enteropathies. Br Med J. 1977;1(6058):428–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Redelmeier DA. New thinking about postoperative hypoalbuminemia: a hypothesis of occult protein-losing enteropathy. Open Med. 2009;3(4):e215–9.

    PubMed  PubMed Central  Google Scholar 

  44. Bode L, Salvestrini C, Park PW, Li J-P, Esko JD, Yamaguchi Y, et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J Clin Invest. 2008;118(1):229–38.

    Article  CAS  PubMed  Google Scholar 

  45. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98(3):694–702.

    Article  CAS  PubMed  Google Scholar 

  46. Ni J, Chen SF, Hollander D. Effects of dextran sulphate sodium on intestinal epithelial cells and intestinal lymphocytes. Gut. 1996;39(2):234–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dieleman LA, Palmen MJ, Akol H, Bloemena E, Peña AS, Meuwissen SG, et al. Chronic experimental colitis induced by dextran sulphate sodium (DSS) is characterized by Th1 and Th2 cytokines. Clin Exp Immunol. 1998;114(3):385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Investig. 1993;69(2):238–49.

    CAS  PubMed  Google Scholar 

  49. Melgar S, Karlsson A, Michaëlsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: correlation between symptoms and inflammation. Am J Physiol Gastrointest Liver Physiol. 2005;288(6):G1328–38.

    Article  CAS  PubMed  Google Scholar 

  50. Perše M, Cerar A. Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol. 2012;2012:718617.

    PubMed  PubMed Central  Google Scholar 

  51. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res. 2007;140(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kitajima S, Takuma S, Morimoto M. Changes in colonic mucosal permeability in mouse colitis induced with dextran sulfate sodium. Exp Anim. 1999;48(3):137–43.

    Article  CAS  PubMed  Google Scholar 

  53. Yan Y, Kolachala V, Dalmasso G, Nguyen H, Laroui H, Sitaraman SV, et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One. 2009;4(6):e6073.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ganta VC, Cromer W, Mills GL, Traylor J, Jennings M, Daley S, et al. Angiopoietin-2 in experimental colitis. Inflamm Bowel Dis. 2010;16(6):1029–39.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Egger B, Bajaj-Elliott M, MacDonald TT, Inglin R, Eysselein VE, Büchler MW. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion. 2000;62(4):240–8.

    Article  CAS  PubMed  Google Scholar 

  56. Brandse JF, van den Brink GR, Wildenberg ME, van der Kleij D, Rispens T, Jansen JM, et al. Loss of infliximab into feces is associated with lack of response to therapy in patients with severe ulcerative colitis. Gastroenterology. 2015;149(2):350–5.e2.

    Article  CAS  PubMed  Google Scholar 

  57. Adedokun OJ, Sandborn WJ, Feagan BG, Rutgeerts P, Xu Z, Marano CW, et al. Association between serum concentration of infliximab and efficacy in adult patients with ulcerative colitis. Gastroenterology. 2014;147(6):1296–1307.e5.

    Article  CAS  PubMed  Google Scholar 

  58. Seow CH, Newman A, Irwin SP, Steinhart AH, Silverberg MS, Greenberg GR. Trough serum infliximab: a predictive factor of clinical outcome for infliximab treatment in acute ulcerative colitis. Gut. 2010;59(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  59. Chami B, Yeung AWS, van Vreden C, King NJC, Bao S. The role of CXCR3 in DSS-induced colitis. PLoS One. 2014;9(7):e101622.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu Y, Hunt NH, Bao S. The correlation between proinflammatory cytokines, MAdCAM-1 and cellular infiltration in the inflamed colon from TNF-a gene knockout mice. Immunol Cell Biol. 2007;85:633–9.

    Article  CAS  PubMed  Google Scholar 

  61. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  62. Liu X, Ye L, Christianson GJ, Yang J-Q, Roopenian DC, Zhu X. NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences. J Immunol. 2007;179(5):2999–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu X, Ye L, Bai Y, Mojidi H, Simister NE, Zhu X. Activation of the JAK/STAT-1 signaling pathway by IFN-gamma can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG. J Immunol. 2008;181(1):449–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Center for Protein Therapeutics, University at Buffalo, and by CA204192 from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Balthasar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, T.R. & Balthasar, J.P. Investigation of the Influence of Protein-Losing Enteropathy on Monoclonal Antibody Pharmacokinetics in Mice. AAPS J 19, 1791–1803 (2017). https://doi.org/10.1208/s12248-017-0135-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0135-z

KEY WORDS

Navigation