Skip to main content

Advertisement

Log in

Population Pharmacokinetic-Pharmacodynamic Model of Oral Fludrocortisone and Intravenous Hydrocortisone in Healthy Volunteers

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

This study aimed at describing the pharmacokinetics and the concentration-effect relationships of fludrocortisone and hydrocortisone on urinary sodium/potassium excretion in healthy volunteers. This was a placebo-controlled, randomized, double blind, crossover study, of oral fludrocortisone and intravenous hydrocortisone, given alone or in combination, in 12 healthy male volunteers. Nonlinear mixed-effects modeling was used to describe the pharmacokinetics and pharmacokinetic-pharmacodynamic relationships on urinary sodium/potassium ratio for each drug. A one-compartment model was used to describe fludrocortisone and hydrocortisone pharmacokinetics. Mean plasma half-life was 1.40 h (95%CI [0.80;2.10]) for fludrocortisone and 2.10 h (95%CI [1.78;2.40]) for hydrocortisone. Clearance was 40.8 L/h (95%CI [33.6;48]) for fludrocortisone and 30 L/h (95%CI [25.3;34.7]) for hydrocortisone. An indirect response model was used to describe effects on urinary sodium/potassium ratio. Fludrocortisone plasma concentrations showed a wider inter-individual dispersion than hydrocortisone plasma concentrations. Urinary sodium/potassium ratio variability was also higher with fludrocortisone as compared to hydrocortisone. The plasma concentration of drug producing 50% of maximal inhibition of urinary sodium/potassium (IC50) was about 200 times lower for fludrocortisone (0.08 μg/L, 95%CI [0.035;0.125]) than for hydrocortisone (16.7 μg/L, 95%CI [10.5;22.9]). Simulations showed that a 4-time per day administration regimen allow to achieve steady fludrocortisone plasma concentrations with stable decrease in urinary sodium/potassium ratio after the second administration of fludrocortisone. Fludrocortisone and hydrocortisone have short and similar plasma elimination half-lives in healthy subjects. Fludrocortisone plasma concentrations and effect on urinary sodium/potassium ratio had a higher inter-individual variability as compared to hydrocortisone. The administration regimen of fludrocortisone should be reconsidered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arlt W, Allolio B. Adrenal insufficiency. Lancet. 2003;361(9372):1881–93.

    Article  CAS  PubMed  Google Scholar 

  2. Annane D, Sébille V, Charpentier C, Bollaert P-E, François B, Korach J-M, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71.

    Article  CAS  PubMed  Google Scholar 

  3. Laviolle B, Annane D, Fougerou C, Bellissant E. Gluco- and mineralocorticoid biological effects of a 7-day treatment with low doses of hydrocortisone and fludrocortisone in septic shock. Intensive Care Med. 2012;38(8):1306–14.

    Article  CAS  PubMed  Google Scholar 

  4. Oelkers W. Adrenal insufficiency. N Engl J Med. 1996;335(16):1206–12.

    Article  CAS  PubMed  Google Scholar 

  5. Sprung CL, Annane D, Keh D, Moreno R, Singer M, Freivogel K, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111–24.

    Article  CAS  PubMed  Google Scholar 

  6. COIITSS Study Investigators, Annane D, Cariou A, Maxime V, Azoulay E, D’honneur G, et al. Corticosteroid treatment and intensive insulin therapy for septic shock in adults: a randomized controlled trial. JAMA. 2010;303(4):341–8.

    Article  Google Scholar 

  7. Annane D. Corticosteroids for severe sepsis: an evidence-based guide for physicians. Ann Intensive Care. 2011;1(1):7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Laviolle B, Le Maguet P, Verdier M-C, Massart C, Donal E, Lainé F, et al. Biological and hemodynamic effects of low doses of fludrocortisone and hydrocortisone, alone or in combination, in healthy volunteers with hypoaldosteronism. Clin Pharmacol Ther. 2010;88(2):183–90.

    Article  CAS  PubMed  Google Scholar 

  9. Vogt W, Fischer I, Ebenroth S, Appel S, Knedel M, Lücker PW, et al. [Pharmacokinetics of 9 -fluorhydrocortisone]. Arzneimittelforschung. 1971;21(8):1133–43.

    Google Scholar 

  10. Ribot M, Polito A, Grassin-Delyle S, Annane D, Alvarez J-C. Human plasma quantification of fludrocortisone using liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry after low-dosage administration. Clin Chim Acta Int J Clin Chem. 2013;420:109–13.

    Article  CAS  Google Scholar 

  11. Chan PLS, Jacqmin P, Lavielle M, McFadyen L, Weatherley B. The use of the SAEM algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects. J Pharmacokinet Pharmacodyn. 2011;38(1):41–61.

    Article  PubMed  Google Scholar 

  12. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.

    Article  CAS  PubMed  Google Scholar 

  13. Bertrand J, Comets E, Mentre F. Comparison of model-based tests and selection strategies to detect genetic polymorphisms influencing pharmacokinetic parameters. J Biopharm Stat. 2008;18(6):1084–102.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90(2):154–66.

    Article  PubMed  Google Scholar 

  15. Rohatagi S, Bye A, Mackie AE, Derendorf H. Mathematical modeling of cortisol circadian rhythm and cortisol suppression. Eur J Pharm Sci. 1996;4(6):341–50.

    Article  CAS  Google Scholar 

  16. Derendorf H, Hochhaus G, Meibohm B, Möllmann H, Barth J. Pharmacokinetics and pharmacodynamics of inhaled corticosteroids. J Allergy Clin Immunol. 1998;101(4 Pt 2):S440–446.

    Article  CAS  PubMed  Google Scholar 

  17. Otte C, Jahn H, Yassouridis A, Arlt J, Stober N, Maass P, et al. The mineralocorticoid receptor agonist, fludrocortisone, inhibits pituitary-adrenal activity in humans after pre-treatment with metyrapone. Life Sci. 2003;73(14):1835–45.

    Article  CAS  PubMed  Google Scholar 

  18. Gaddum JH. Theories of drug antagonism. Pharmacol Rev. 1957;9(2):211–8.

    CAS  PubMed  Google Scholar 

  19. Greco WR, Bravo G, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995;47(2):331–85.

    CAS  PubMed  Google Scholar 

  20. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21(4):457–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Polito A, Hamitouche N, Ribot M, Polito A, Laviolle B, Bellissant E, et al. Pharmacokinetics of oral fludrocortisone in septic shock. Br J Clin Pharmacol 2016.

  22. Toothaker RD, Craig WA, Welling PG. Effect of dose size on the pharmacokinetics of oral hydrocortisone suspension. J Pharm Sci. 1982;71(10):1182–5.

    Article  CAS  PubMed  Google Scholar 

  23. Simon N, Castinetti F, Ouliac F, Lesavre N, Brue T, Oliver C. Pharmacokinetic evidence for suboptimal treatment of adrenal insufficiency with currently available hydrocortisone tablets. Clin Pharmacokinet. 2010;49(7):455–63.

    Article  CAS  PubMed  Google Scholar 

  24. Derendorf H, Möllmann H, Barth J, Möllmann C, Tunn S, Krieg M. Pharmacokinetics and oral bioavailability of hydrocortisone. J Clin Pharmacol. 1991;31(5):473–6.

    Article  CAS  PubMed  Google Scholar 

  25. Thomson AH, Devers MC, Wallace AM, Grant D, Campbell K, Freel M, et al. Variability in hydrocortisone plasma and saliva pharmacokinetics following intravenous and oral administration to patients with adrenal insufficiency. Clin Endocrinol (Oxf). 2007;66(6):789–96.

    Article  CAS  Google Scholar 

  26. Banda J, Lakshmanan R, Vvs SP, Gudla SP, Prudhivi R. A highly sensitive method for the quantification of fludrocortisone in human plasma using ultra-high-performance liquid chromatography tandem mass spectrometry and its pharmacokinetic application. Biomed Chromatogr BMC 2015

  27. Mitsky VP, Workman RJ, Nicholson WE, Vernikos J, Robertson RM, Robertson D. A sensitive radioimmunoassay for fludrocortisone in human plasma. Steroids. 1994;59(9):555–8.

    Article  CAS  PubMed  Google Scholar 

  28. Sheiner L, Wakefield J. Population modelling in drug development. Stat Methods Med Res. 1999;8(3):183–93.

    Article  CAS  PubMed  Google Scholar 

  29. Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993;21(6):735–50.

    Article  CAS  PubMed  Google Scholar 

  30. Hong Y, Mager DE, Blum RA, Jusko WJ. Population pharmacokinetic/pharmacodynamic modeling of systemic corticosteroid inhibition of whole blood lymphocytes: modeling interoccasion pharmacodynamic variability. Pharm Res. 2007;24(6):1088–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank Nolwenn Boissel, Viviane Fortuna, and Cecile Reminiac (research nurses, Clinical Investigation Unit, Inserm CIC 1414 Clinical Investigation Centre) for technical assistance and Stuart Byrom for English editing. We also thank Pr Djillali Annane for his comments on the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Laviolle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 29 kb)

Fig. S1

Goodness-of-fit plots for the final pharmacokinetic model of fludrocortisone. (a) Observations versus population predicted values; (b) Observations versus individual predicted values; (c) Normalized Prediction Distribution Errors (NPDE) versus time. Observations are plotted as closed circles and crosses show censored data (below the quantification limit) (GIF 22 kb)

High resolution image (EPS 547 kb)

Fig. S2

Goodness-of-fit plots for the final pharmacokinetic model of hydrocortisone. (a) Observations versus population predicted values; (b) Observations versus individual predicted values; (c) Normalized Prediction Distribution Errors (NPDE) versus time. Observations are plotted as closed circles (GIF 21 kb)

High resolution image (EPS 189 kb)

Fig. S3

Goodness-of-fit plots for the final pharmacokinetic-pharmacodynamic model. (a) Observations versus population predicted values; (b) Observations versus individual predicted values; (c) Normalized Prediction Distribution Errors (NPDE) versus time. Observations are plotted as closed circles (GIF 21 kb)

High resolution image (EPS 380 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamitouche, N., Comets, E., Ribot, M. et al. Population Pharmacokinetic-Pharmacodynamic Model of Oral Fludrocortisone and Intravenous Hydrocortisone in Healthy Volunteers. AAPS J 19, 727–735 (2017). https://doi.org/10.1208/s12248-016-0041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-0041-9

KEY WORDS

Navigation