Skip to main content

Advertisement

Log in

GATG Dendrimers and PEGylated Block Copolymers: from Synthesis to Bioapplications

  • Review Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Dendrimers are synthetic macromolecules composed of repetitive layers of branching units that emerge from a central core. They are characterized by a tunable size and precise number of peripheral groups which determine their physicochemical properties and function. Their high multivalency, functional surface, and globular architecture with diameters in the nanometer scale makes them ideal candidates for a wide range of applications. Gallic acid-triethylene glycol (GATG) dendrimers have attracted our attention as a promising platform in the biomedical field because of their high tunability and versatility. The presence of terminal azides in GATG dendrimers and poly(ethylene glycol) (PEG)-dendritic block copolymers allows their efficient functionalization with a variety of ligands of biomedical relevance including anionic and cationic groups, carbohydrates, peptides, or imaging agents. The resulting functionalized dendrimers have found application in drug and gene delivery, as antiviral agents and for the treatment of neurodegenerative diseases, in diagnosis and as tools to study multivalent carbohydrate recognition and dendrimer dynamics. Herein, we present an account on the preparation and recent applications of GATG dendrimers in these fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AMCA:

Aminomethylcoumarin

CA:

HIV capsid protein

CTD:

C-Terminal domain

Con A:

Concanavalin A

CuAAC:

Cu(I)-catalyzed azide-alkyne cycloaddition

DTPA:

Diethylenetriaminepentaacetate

DOTA:

1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

DO3A:

Tri-tert-butyl 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate

EGFP:

Enhanced green fluorescent protein

FDA:

Food and Drug Administration

FITC:

Fluorescein isothiocyanate

GATG:

Gallic acid-triethylene glycol

G n :

Dendrimer generation, n denotes the generation number

Glc:

Glucose

HEK293T:

Human embryonic kidney cell line 293T

HIV:

Human immunodeficiency virus

HPMA:

N-(2-hydroxypropyl)methacrylamide

HSV:

Herpes simplex virus

ITC:

Isothermal titration calorimetry

Man:

Mannose

Mor:

Morpholine

MRI:

Magnetic resonance imaging

NOE:

Nuclear Overhauser effect

PAMAM:

Polyamidoamine

PEG:

Poly(ethylene glycol)

PPI:

Polypropylene imine

PIC:

Polyion complex

RGD:

Arginylglycylaspartic acid

SPR:

Surface plasmon resonance

References

  1. Amaral SP, Fernandez-Villamarin M, Correa J, Riguera R, Fernandez-Megia E. Efficient multigram synthesis of the repeating unit of gallic acid-triethylene glycol dendrimers. Org Lett. 2011;13(17):4522–5.

    Article  CAS  PubMed  Google Scholar 

  2. Fréchet JMJ, Tomalia DA, editors. Dendrimers and other dendritic polymers. New York: Jonh Wiley & Sons; 2001

  3. Tomalia DA. Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci. 2005;30(3–4):294–324.

    Article  CAS  Google Scholar 

  4. Newkome GR, Moorefield CN, Vögtle F. Dendrimers and dendrons: concepts, syntheses, applications. Wiley-VCH: Weinheim; 2001.

    Book  Google Scholar 

  5. Mintzer MA, Grinstaff MW. Biomedical applications of dendrimers: a tutorial. Chem Soc Rev. 2011;40(1):173–90.

    Article  CAS  PubMed  Google Scholar 

  6. Tekade RK, Kumar PV, Jain NK. Dendrimers in oncology: an expanding horizon. Chem Rev. 2009;109(1):49–87.

    Article  CAS  PubMed  Google Scholar 

  7. Medina SH, El-Sayed MEH. Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev. 2009;109(7):3141–57.

    Article  CAS  PubMed  Google Scholar 

  8. Dufès C, Uchegbu IF, Schätzlein AG. Dendrimers in gene delivery. Adv Drug Delivery Rev. 2005;57(15):2177–202.

    Article  Google Scholar 

  9. Rolland O, Turrin C-O, Caminade A-M, Majoral J-P. Dendrimers and nanomedicine: multivalency in action. New J Chem. 2009;33(9):1809–24.

    Article  CAS  Google Scholar 

  10. Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110(4):1857–959.

    Article  CAS  PubMed  Google Scholar 

  11. Reek JNH, Arévalo S, van Heerbeek R, Kamer PCJ, van Leeuwen PWNM. Dendrimers in catalysis. In: Bruce CG, Helmut K, editors. Advances in catalysis: Academic Press; 2006. p. 71–151.

  12. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev. 2009;109(11):6275–540.

    Article  CAS  PubMed  Google Scholar 

  13. Buhleier E, Wehner W, Vogtle F. Synthesis. 1978;2:155–8.

    Article  Google Scholar 

  14. Newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem. 1985;50(11):2003–4.

    Article  CAS  Google Scholar 

  15. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

    Article  CAS  Google Scholar 

  16. Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today. 2001;6(8):427–36.

    Article  CAS  PubMed  Google Scholar 

  17. de Brabander-vandenBerg EMM, Meijer EW. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem, Int Ed. 1993;32(9):1308–11.

    Article  Google Scholar 

  18. Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112(21):7638–47.

    Article  CAS  Google Scholar 

  19. Carnahan MA, Grinstaff MW. Synthesis of generational polyester dendrimers derived from glycerol and succinic or adipic acid. Macromolecules. 2005;39(2):609–16.

    Article  Google Scholar 

  20. Ihre H, Padilla De Jesús OL, Fréchet JMJ. Fast and convenient divergent synthesis of aliphatic ester dendrimers by anhydride coupling. J Am Chem Soc. 2001;123(25):5908–17.

    Article  CAS  PubMed  Google Scholar 

  21. Majoral J-P, Caminade A-M. Dendrimers containing heteroatoms (Si, P, B, Ge, or Bi). Chem Rev. 1999;99(3):845–80.

    Article  CAS  PubMed  Google Scholar 

  22. Sashiwa H, Shigemasa Y, Roy R. Chemical modification of chitosan. 10.1 synthesis of dendronized chitosan–sialic acid hybrid using convergent grafting of preassembled dendrons built on gallic acid and tri(ethylene glycol) backbone. Macromolecules. 2001;34(12):3905–9.

    Article  CAS  Google Scholar 

  23. Meunier SJ, Wu Q, Wang S-N, Roy R. Synthesis of hyperbranched glycodendrimers incorporating α-thiosialosides based on a gallic acid core. Can J Chem. 1997;75(11):1472–82.

    Article  Google Scholar 

  24. Roy R, Park WKC, Wu Q, Wang S-N. Synthesis of hyper-branched dendritic lactosides. Tetrahedron Lett. 1995;36(25):4377–80.

    Article  CAS  Google Scholar 

  25. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem, Int Ed. 2002;41(14):2596–9.

  26. Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67(9):3057–64.

    Article  PubMed  Google Scholar 

  27. Meldal M, Tornøe CW. Cu-catalyzed azide–alkyne cycloaddition. Chem Rev. 2008;108(8):2952–3015.

    Article  CAS  PubMed  Google Scholar 

  28. Lallana E, Sousa-Herves A, Fernandez-Trillo F, Riguera R, Fernandez-Megia E. Click chemistry for drug delivery nanosystems. Pharm Res. 2012;29(1):1–34.

    Article  CAS  PubMed  Google Scholar 

  29. Lallana E, Fernandez-Trillo F, Sousa-Herves A, Riguera R, Fernandez-Megia E. Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharm Res. 2012;29(4):902–21.

    Article  CAS  PubMed  Google Scholar 

  30. Wurm F, Frey H. Linear-dendritic block copolymers: the state of the art and exciting perspectives. Prog Polym Sci. 2011;36(1):1–52.

    Article  CAS  Google Scholar 

  31. Gitsov I. Hybrid linear dendritic macromolecules: from synthesis to applications. J Polym Sci, Part A: Polym Chem. 2008;46(16):5295–314.

    Article  CAS  Google Scholar 

  32. Sousa-Herves A, Riguera R, Fernandez-Megia E. PEG-dendritic block copolymers for biomedical applications. New J Chem. 2012;36:205–10.

    Article  CAS  Google Scholar 

  33. Fernandez-Megia E, Correa J, Rodríguez-Meizoso I, Riguera R. A click approach to unprotected glycodendrimers. Macromolecules. 2006;39(6):2113–20.

    Article  CAS  Google Scholar 

  34. Raviña M, de la Fuente M, Correa J, Sousa-Herves A, Pinto J, Fernandez-Megia E, et al. Core–shell dendriplexes with sterically induced stoichiometry for gene delivery. Macromolecules. 2010;43(17):6953–61.

    Article  Google Scholar 

  35. Fernandez-Megia E, Correa J, Riguera R. Clickable PEG-dendritic block copolymers. Biomacromolecules. 2006;7(11):3104–11.

    Article  CAS  PubMed  Google Scholar 

  36. Gravert DJ, Janda KD. Organic synthesis on soluble polymer supports: liquid-phase methodologies. Chem Rev. 1997;97(2):489–510.

    Article  CAS  PubMed  Google Scholar 

  37. Jelínková M, Strohalm J, Etrych T, Ulbrich K, Říhová B. Starlike vs classic macromolecular prodrugs: two different antibody-targeted HPMA copolymers of doxorubicin studied in vitro and in vivo as potential anticancer drugs. Pharm Res. 2003;20(10):1558–64.

    Article  PubMed  Google Scholar 

  38. Khandare JJ, Jayant S, Singh A, Chandna P, Wang Y, Vorsa N, et al. Dendrimer versus linear conjugate: influence of polymeric architecture on the delivery and anticancer effect of paclitaxel. Bioconjugate Chem. 2006;17(6):1464–72.

    Article  CAS  Google Scholar 

  39. Albertazzi L, Fernandez-Villamarin M, Riguera R, Fernandez-Megia E. Peripheral functionalization of dendrimers regulates internalization and intracellular trafficking in living cells. Bioconjugate Chem. 2012;23(5):1059–68.

    Article  CAS  Google Scholar 

  40. Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules. 1995;28(15):5294–9.

    Article  CAS  Google Scholar 

  41. Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A. Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions. Macromolecules. 1996;29(21):6797–802.

    Article  CAS  Google Scholar 

  42. Lee Y, Kataoka K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter. 2009;5:3810–7.

    Article  CAS  Google Scholar 

  43. Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71(3):227–34.

    Article  CAS  Google Scholar 

  44. Sousa-Herves A, Fernandez-Megia E, Riguera R. Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles. Chem Commun. 2008;27:3136–8.

    Article  Google Scholar 

  45. Sousa-Herves A, Riguera R, Fernandez-Megia E. The pH-sensitive dendritic polymeric micelles as drug delivery systems. PCT Int Appl (2010) WO 2010018286 A1 20100218.

  46. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev. 2009;109(2):259–302.

    Article  CAS  PubMed  Google Scholar 

  47. Liu X, Rocchi P, Peng L. Dendrimers as non-viral vectors for siRNA delivery. New J Chem. 2012;36(2):256–63.

    Article  CAS  Google Scholar 

  48. Wood KC, Little SR, Langer R, Hammond PT. A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew Chem, Int Ed. 2005;44(41):6704–8.

    Article  CAS  Google Scholar 

  49. Choi JS, Joo DK, Kim CH, Kim K, Park JS. Synthesis of a barbell-like triblock copolymer, poly(l-lysine) dendrimer-block-poly(ethylene glycol)-block-poly(l-lysine) dendrimer, and its self-assembly with plasmid DNA. J Am Chem Soc. 2000;122(3):474–80.

    Article  CAS  Google Scholar 

  50. de la Fuente M, Ravina M, Sousa-Herves A, Correa J, Riguera R, Fernandez-Megia E, et al. Exploring the efficiency of gallic acid-based dendrimers and their block copolymers with PEG as gene carriers. Nanomedicine (Lond). 2012;7(11):1667–81.

    Article  Google Scholar 

  51. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83(3):97–111.

    Article  CAS  PubMed  Google Scholar 

  52. Chen CZ, Beck-Tan NC, Dhurjati P, van Dyk TK, LaRossa RA, Cooper SL. Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure–activity studies. Biomacromolecules. 2000;1(3):473–80.

    Article  CAS  PubMed  Google Scholar 

  53. Meyers SR, Juhn FS, Griset AP, Luman NR, Grinstaff MW. Anionic amphiphilic dendrimers as antibacterial agents. J Am Chem Soc. 2008;130(44):14444–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Ortega P, Copa-Patino JL, Munoz-Fernandez MA, Soliveri J, Gomez R, de la Mata FJ. Amine and ammonium functionalization of chloromethylsilane-ended dendrimers. Antimicrobial activity studies. Org Biomol Chem. 2008;6(18):3264–9.

    Article  CAS  PubMed  Google Scholar 

  55. Dernedde J, Rausch A, Weinhart M, Enders S, Tauber R, Licha K, et al. Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci U S A. 2010;107(46):19679–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Hayder M, Poupot M, Baron M, Nigon D, Turrin C-O, Caminade A-M, et al. A phosphorus-based dendrimer targets inflammation and osteoclastogenesis in experimental arthritis. Sci Transl Med. 2011;3(81):81–35.

    Article  Google Scholar 

  57. Griffe L, Poupot M, Marchand P, Maraval A, Turrin C-O, Rolland O, et al. Multiplication of human natural killer cells by nanosized phosphonate-capped dendrimers. Angew Chem, Int Ed. 2007;46(14):2523–6.

    Article  CAS  Google Scholar 

  58. Chonco L, Pion M, Vacas E, Rasines B, Maly M, Serramía MJ, et al. Carbosilane dendrimer nanotechnology outlines of the broad HIV blocker profile. J Control Release. 2012;161(3):949–58.

    Article  CAS  PubMed  Google Scholar 

  59. Jimenez JL, Pion M, Mata FJ, Gomez R, Munoz E, Leal M, et al. Dendrimers as topical microbicides with activity against HIV. New J Chem. 2012;36(2):299–309.

    Article  CAS  Google Scholar 

  60. Blanzat M, Turrin C-O, Aubertin A-M, Couturier-Vidal C, Caminade A-M, Majoral J-P, et al. Dendritic catanionic assemblies: in vitro anti-HIV activity of phosphorus-containing dendrimers bearing Galβ1cer analogues. ChemBioChem. 2005;6(12):2207–13.

    Article  CAS  PubMed  Google Scholar 

  61. Rupp R, Rosentha SL, Stanberry LR. VivaGel™ (SPL7013 Gel): a candidate dendrimer—microbicide for the prevention of HIV and HSV infection. Int J Nanomed. 2007;4:561–6.

    Google Scholar 

  62. Supattapone S, Nguyen H-OB, Cohen FE, Prusiner SB, Scott MR. Elimination of prions by branched polyamines and implications for therapeutics. Proc Natl Acad Sci U S A. 1999;96(25):14529–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Klajnert B, Cangiotti M, Calici S, Majoral JP, Caminade AM, Cladera J, et al. EPR study of the interactions between dendrimers and peptides involved in Alzheimer’s and prion diseases. Macromol Biosci. 2007;7(8):1065–74.

    Article  CAS  PubMed  Google Scholar 

  64. Neira JL. The capsid protein of human immunodeficiency virus: designing inhibitors of capsid assembly. FEBS J. 2009;276(21):6110–7.

    Article  CAS  PubMed  Google Scholar 

  65. Doménech R, Abian O, Bocanegra R, Correa J, Sousa-Herves A, Riguera R, et al. Dendrimers as potential inhibitors of the dimerization of the capsid protein of HIV-1. Biomacromolecules. 2010;11(8):2069–78.

    Article  PubMed  Google Scholar 

  66. Xu L, Zhang H, Wu Y. Dendrimer advances for the central nervous system delivery of therapeutics. ACS Chem Neurosci. 2013;5(1):2–13.

    Article  PubMed  Google Scholar 

  67. Hindo SS, Mancino AM, Braymer JJ, Liu Y, Vivekanandan S, Ramamoorthy A, et al. Small molecule modulators of copper-induced Aβ aggregation. J Am Chem Soc. 2009;131(46):16663–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Yoo SI, Yang M, Brender JR, Subramanian V, Sun K, Joo NE, et al. Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: functional similarities with proteins. Angew Chem, Int Ed. 2011;50(22):5110–5.

    Article  CAS  Google Scholar 

  69. Klajnert B, Wasiak T, Ionov M, Fernandez-Villamarin M, Sousa-Herves A, Correa J, et al. Dendrimers reduce toxicity of Aβ 1–28 peptide during aggregation and accelerate fibril formation. Nanomedicine (New York, NY, U S). 2012;8:1372–8.

    CAS  Google Scholar 

  70. Pashkuleva I, Reis RL. Sugars: burden or biomaterials of the future? J Mater Chem. 2010;20(40):8803–18.

    Article  CAS  Google Scholar 

  71. Fasting C, Schalley CA, Weber M, Seitz O, Hecht S, Koksch B, et al. Multivalency as a chemical organization and action principle. Angew Chem, Int Ed. 2012;51(42):10472–98.

    Article  CAS  Google Scholar 

  72. Kiessling LL, Young T, Gruber TD, Mortell KH. Multivalency in protein–carbohydrate recognition. In: Fraser-Reid B, Tatsuta K, Thiem J, editors. Glycoscience. Heidelberg: Springer Berlin; 2008. p. 2483–523.

    Chapter  Google Scholar 

  73. Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev. 2002;102(2):555–78.

    Article  CAS  PubMed  Google Scholar 

  74. Munoz EM, Correa J, Riguera R, Fernandez-Megia E. Real-time evaluation of binding mechanisms in multivalent interactions: a surface plasmon resonance kinetic approach. J Am Chem Soc. 2013;135(16):5966–9.

    Article  CAS  PubMed  Google Scholar 

  75. Munoz EM, Correa J, Fernandez-Megia E, Riguera R. Probing the relevance of lectin clustering for the reliable evaluation of multivalent carbohydrate recognition. J Am Chem Soc. 2009;131(49):17765–7.

    Article  CAS  PubMed  Google Scholar 

  76. Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev. 2010;110(5):3019–42.

    Article  CAS  PubMed  Google Scholar 

  77. Geraldes CFGC, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging. 2009;4(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  78. Villaraza AJ, Bumb A, Brechbiel MW. Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev. 2010;110(5):2921–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15(5–6):171–85.

    Article  CAS  PubMed  Google Scholar 

  80. Louie A. Multimodality imaging probes: design and challenges. Chem Rev. 2010;110(5):3146–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Fernández-Trillo F, Pacheco-Torres J, Correa J, Ballesteros P, Lopez-Larrubia P, Cerdán S, et al. Dendritic MRI contrast agents: an efficient prelabeling approach based on CuAAC. Biomacromolecules. 2011;12(8):2902–7.

    Article  PubMed  Google Scholar 

  82. Dong Q, Hurst DR, Weinmann HJ, Chenevert TL, Londy FJ, Prince MR. Magnetic resonance angiography with gadomer-17: an animal study. Investig Radiol. 1998;33(9):699–708.

    Article  CAS  Google Scholar 

  83. Matthias Ballauff CNL. Dendrimers in solution: insight from theory and simulation. Angew Chem, Int Ed. 2004;43(23):2998–3020.

  84. Palmer AG. NMR characterization of the dynamics of biomacromolecules. Chem Rev. 2004;104(8):3623–40.

    Article  CAS  PubMed  Google Scholar 

  85. Pinto LF, Correa J, Martin-Pastor M, Riguera R, Fernandez-Megia E. The dynamics of dendrimers by NMR relaxation: interpretation pitfalls. J Am Chem Soc. 2013;135(5):1972–7.

    Article  CAS  PubMed  Google Scholar 

  86. Kowalewski J, Maeler L, Editors. Nuclear spin relaxation in liquids: theory, experiments, and applications: CRC Press; 2006.

  87. Novoa-Carballal R, Säwén E, Fernandez-Megia E, Correa J, Riguera R, Widmalm G. The dynamics of GATG glycodendrimers by NMR diffusion and quantitative 13C relaxation. Phys Chem Chem Phys. 2010;12(25):6587–9.

    Article  CAS  PubMed  Google Scholar 

  88. Meltzer AD, Tirrell DA, Jones AA, Inglefield PT, Hedstrand DM, Tomalia DA. Chain dynamics in poly(amidoamine) dendrimers: a study of carbon-13 NMR relaxation parameters. Macromolecules. 1992;25(18):4541–8.

    Article  CAS  Google Scholar 

  89. Hecht S, Fréchet JMJ. An alternative synthetic approach toward dendritic macromolecules: novel benzene-core dendrimers via alkyne cyclotrimerization. J Am Chem Soc. 1999;121(16):4084–5.

    Article  CAS  Google Scholar 

  90. Kimata S-I, Jiang D-L, Aida T. Morphology-dependent luminescence properties of poly(benzyl ether) dendrimers. J Polym Sci, Part A: Polym Chem. 2003;41(22):3524–30.

    Article  CAS  Google Scholar 

  91. Mourey TH, Turner SR, Rubinstein M, Frechet JMJ, Hawker CJ, Wooley KL. Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules. 1992;25(9):2401–6.

    Article  CAS  Google Scholar 

  92. Wooley KL, Klug CA, Tasaki K, Schaefer J. Shapes of dendrimers from rotational-echo double-resonance NMR. J Am Chem Soc. 1997;119(1):53–8.

    Article  CAS  Google Scholar 

  93. Novoa-Carballal R, Fernandez-Megia E, Jimenez C, Riguera R. NMR methods for unravelling the spectra of complex mixtures. Nat Prod Rep. 2011;28(1):78–98.

    Article  CAS  PubMed  Google Scholar 

  94. Pinto LF, Riguera R, Fernandez-Megia E. Stepwise filtering of the internal layers of dendrimers by transverse-relaxation-edited NMR. J Am Chem Soc. 2013;135(31):11513–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge past and present lab members who have contributed to the development of dendrimers in our group. This work was financially supported by the Spanish Government (CTQ2009-10963, CTQ2012-34790, CTQ2009-14146-C02-02, CTQ2012-33436) and the Xunta de Galicia (10CSA209021PR and CN2011/037).

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Fernandez-Megia.

Additional information

Ana Sousa-Herves and Ramon Novoa-Carballal contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa-Herves, A., Novoa-Carballal, R., Riguera, R. et al. GATG Dendrimers and PEGylated Block Copolymers: from Synthesis to Bioapplications. AAPS J 16, 948–961 (2014). https://doi.org/10.1208/s12248-014-9642-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9642-3

KEY WORDS

Navigation