Skip to main content

Advertisement

Log in

Click Chemistry for Drug Delivery Nanosystems

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

“The reaction must be modular wide in scope, give very high yields, generate only inoffensive byproducts that can be removed by nonchromatographic methods, and be stereospecific (but not necessarily enantioselective). The required process characteristics include simple reaction conditions (ideally, the process should be insensitive to oxygen and water), readily available starting materials and reagents, the use of no solvent or a solvent that is benign (such as water) or easily removed, and simple product isolation. Purification—if required—must be by nonchromatographic methods, such as crystallization or distillation, and the product must be stable under physiological conditions… Click processes proceed rapidly to completion and also tend to be highly selective for a single product: we think of these reactions as being “spring-loaded” for a single trajectory”. H. C. Kolb, M. G. Finn and K. B. Sharpless. Angew. Chem., Int. Ed. 40: 2004–2021 (2001).

ABSTRACT

The purpose of this Expert Review is to discuss the impact of click chemistry in nanosized drug delivery systems. Since the introduction of the click concept by Sharpless and coworkers in 2001, numerous examples of click reactions have been reported for the preparation and functionalization of polymeric micelles and nanoparticles, liposomes and polymersomes, capsules, microspheres, metal and silica nanoparticles, carbon nanotubes and fullerenes, or bionanoparticles. Among these click processes, Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) has attracted most attention based on its high orthogonality, reliability, and experimental simplicity for non-specialists. A renewed interest in the use of efficient classical transformations has been also observed (e.g., thiol-ene coupling, Michael addition, Diels-Alder). Special emphasis is also devoted to critically discuss the click concept, as well as practical aspects of application of CuAAC to ensure efficient and harmless bioconjugation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Abbreviations

AAC:

azide-alkyne cycloaddition

AgNP:

silver nanoparticle

AIBN:

azobisisobutyronitrile

Alk:

alkyne

ATRP:

atom transfer radical polymerization

AuNP:

gold nanoparticle

Az:

azide

BNP:

bionanoparticle

BPDS:

bathophenanthroline disulphonated disodium salt

CD:

cyclodextrin

CMC:

critical micelle concentration

CNT:

carbon nanotube

CPMV:

cowpea mosaic virus

CTA:

chain transfer agent

CuAAC:

Cu(I)-catalyzed azide-alkyne cycloaddition

DBU:

1,8-diazabicyclo[5.4.0]undec-7-ene

DDS:

drug delivery system

DIPEA:

N,N-diisopropylethylamine

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

DOX:

doxorubicin

EGF:

epidermal growth factor

EGFP:

enhanced green fluorescent protein

EPL:

expressed protein ligation

EPR:

enhanced permeability and retention

FA:

folic acid

FPLC:

fast protein liquid chromatography

FR:

folate receptor

FRET:

fluorescence resonance energy transfer

GFP:

green fluorescent protein

HABA:

2-(4-hydroxyphenylazo)benzoic acid

HEMA:

2-hydroxyethyl methacrylate

LA:

lactic acid

LbL:

layer-by-layer

MAA:

methacrylic acid

MBP:

maltose binding protein

MNP:

magnetic nanoparticle

MRI:

magnetic resonance imaging

MWCNT:

multi-walled carbon nanotube

NHS:

N-hydroxysuccinimide

NP:

nanoparticle

PAA:

poly(acrylic acid)

PACA:

poly(alkyl cyanocrylate)

PBD:

poly(butadiene)

PCL:

poly(ε-caprolactone)

PCN:

polymer-caged nanobin

PDMA:

poly(N,N-dimethylacrylamide)

PEG:

poly(ethylene glycol)

PEI:

poly(ethylene imine)

PEO:

poly(ethylene oxide)

PET:

position emission tomography

PGA:

poly-L-glutamic acid

PIC:

polyion complex

PLL:

poly-L-lysine

PMA:

poly(methacrylate)

PMDETA:

N,N,N′,N′,N″-pentamethyldiethylenetriamine

PMPC:

poly(2-methyl-2-carboxyl-propylene carbonate)

PNIPAM:

poly (N-isopropylacrylamide)

PrMA:

propyl methacrylate

PS:

poly(styrene)

PTMCC:

poly(2-methyl-2-carboxytrimethylene carbonate)

PtNP:

platinum nanoparticle

PTQY:

photoluminescence quantum yield

PVP:

poly(vinyl pyrrolidone)

QD:

quantum dot

RAFT:

reversible addition-fragmentation chain transfer

RGD:

Arg-Gly-Asp

ROS:

reactive oxygen species

SiNP:

silica nanoparticle

SPAAC:

strain-promoted azide-alkyne cycloaddition

SPION:

superparamagnetic iron oxide nanoparticle

STEM:

scanning transmission electron microscopy

SWCNT:

single-walled carbon nanotube

TBTA:

tris(benzyltriazolylmethyl)amine

TCEP:

tris(carboxyethyl)phosphine

TEC:

thiol-ene coupling

THPTA:

tris(hydroxypropyltriazolylmethyl)amine

TMS:

trimethylsilyl

VNP:

viral nanoparticle

REFERENCES

  1. Hoffman AS. The origins and evolution of “controlled” drug delivery systems. J Contr Release. 2008;132:153–63.

    Article  CAS  Google Scholar 

  2. Wang B, Siahaan TJ, Soltero R. Drug delivery: principles and applications. Hoboken: Wiley; 2005.

    Book  Google Scholar 

  3. van Vlerken L, Vyas T, Amiji M. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm Res. 2007;24:1405–14.

    Article  PubMed  CAS  Google Scholar 

  4. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev. 2008;60:1615–26.

    Article  PubMed  CAS  Google Scholar 

  5. Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjugate Chem. 2010;21:797–802.

    Article  CAS  Google Scholar 

  6. Uchegbu IF, Schätzlein AG. Polymers in drug delivery. Boca Raton: CRC Press; 2006.

    Book  Google Scholar 

  7. Anastas P, Eghbali N. Green chemistry: principles and practice. Chem Soc Rev. 2010;39:301–12.

    Article  PubMed  CAS  Google Scholar 

  8. Kolb HC, Finn MG, Sharpless KB. Click chemistry: diverse chemical function from a few good reactions. Angew Chem, Int Ed. 2001;40:2004–21.

    Article  CAS  Google Scholar 

  9. Tornøe CW, Christensen C, Meldal M. Peptidotriazoles on solid phase: [1–3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem. 2002;67:3057–64.

    Article  PubMed  CAS  Google Scholar 

  10. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem, Int Ed. 2002;41:2596–9.

    Article  CAS  Google Scholar 

  11. Debets MF, van der Doelen CWJ, Rutjes FPJT, van Delft FL. Azide: a unique dipole for metal-free bioorthogonal ligations. Chembiochem. 2010;11:1168–84.

    Article  PubMed  CAS  Google Scholar 

  12. Iha RK, Wooley KL, Nyström AM, Burke DJ, Kade MJ, Hawker CJ. Applications of orthogonal “click” chemistries in the synthesis of functional soft materials. Chem Rev. 2009;109:5620–86.

    Article  PubMed  CAS  Google Scholar 

  13. Meldal M, Tornøe CW. Cu-Catalyzed azide-alkyne cycloaddition. Chem Rev. 2008;108:2952–3015.

    Article  PubMed  CAS  Google Scholar 

  14. Fokin VV, Wu P. Catalytic azide-alkyne cycloaddition: reactivity and applications. Aldrichim Acta. 2007;40:7–17.

    Google Scholar 

  15. van Dijk M, Rijkers DTS, Liskamp RMJ, van Nostrum CF, Hennink WE. Synthesis and applications of biomedical and pharmaceutical polymers via click chemistry methodologies. Bioconjugate Chem. 2009;20:2001–16.

    Article  CAS  Google Scholar 

  16. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc. 2003;125:3192–3.

    Article  PubMed  CAS  Google Scholar 

  17. Halliwell B, Gutteridge JMC. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85.

    Article  PubMed  CAS  Google Scholar 

  18. Fry SC. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals. Biochem J. 1998;332:507–15.

    PubMed  CAS  Google Scholar 

  19. Duxbury CJ, Cummins D, Heise A. Glaser coupling of polymers: side-reaction in Huisgens “click” coupling reaction and opportunity for polymers with focal diacetylene units in combination with ATRP. J Polymer Sci, Part A: Polymer Chem. 2009;47:3795–802.

    Article  CAS  Google Scholar 

  20. Chan TR, Hilgraf R, Sharpless KB, Fokin VV. Polytriazoles as copper(I)-stabilizing ligands in catalysis. Org Lett. 2004;6:2853–5.

    Article  PubMed  CAS  Google Scholar 

  21. Lewis WG, Magallon FG, Fokin VV, Finn MG. Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J Am Chem Soc. 2004;126:9152–3.

    Article  PubMed  CAS  Google Scholar 

  22. Hong V, Presolski SI, Ma C, Finn MG. Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew Chem, Int Ed. 2009;48:9879–83.

    Article  CAS  Google Scholar 

  23. Gupta SS, Kuzelka J, Singh P, Lewis WG, Manchester M, Finn MG. Accelerated bioorthogonal conjugation: a practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjugate Chem. 2005;16:1572–9.

    Article  CAS  Google Scholar 

  24. Agard NJ, Prescher JA, Bertozzi CR. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J Am Chem Soc. 2004;126:15046–7.

    Article  PubMed  CAS  Google Scholar 

  25. Hong V, Udit AK, Evans RA, Finn MG. Electrochemically protected copper(I)-catalyzed azide-alkyne cycloaddition. Chembiochem. 2008;9:1481–6.

    Article  PubMed  CAS  Google Scholar 

  26. Kumar R, El-Sagheer AH, Tumpane J, Lincoln P, Wilhelmsson LM, Brown T. Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry. J Am Chem Soc. 2007;129:6859–64.

    Article  PubMed  CAS  Google Scholar 

  27. Baskin JM, Bertozzi CR. Copper-free click chemistry: bioorthogonal reagents for tagging azides. Aldrichim Acta. 2010;43:15–23.

    CAS  Google Scholar 

  28. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, et al. Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA. 2007;104:16793–7.

    Article  PubMed  CAS  Google Scholar 

  29. Codelli JA, Baskin JM, Agard NJ, Bertozzi CR. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J Am Chem Soc. 2008;130:11486–93.

    Article  PubMed  CAS  Google Scholar 

  30. Ning X, Guo J, Wolfert MA, Boons G-J. Visualizing metabolically labeled glycoconjugates of living cells by copper-free and fast Huisgen cycloadditions. Angew Chem, Int Ed. 2008;47:2253–5.

    Article  CAS  Google Scholar 

  31. Debets MF, van Berkel SS, Schoffelen S, Rutjes FPJT, van Hest JCM, van Delft FL. Aza-dibenzocyclooctynes for fast and efficient enzyme PEGylation via copper-free (3 + 2) cycloaddition. Chem Commun. 2010;46:97–9.

    Article  CAS  Google Scholar 

  32. Jewett JC, Sletten EM, Bertozzi CR. Rapid Cu-free click chemistry with readily synthesized biarylazacyclooctynones. J Am Chem Soc. 2010;132:3688–90.

    Article  PubMed  CAS  Google Scholar 

  33. Dommerholt J, Schmidt S, Temming R, Hendriks LJA, Rutjes FPJT, van Hest JCM, et al. Readily accessible bicyclononynes for bioorthogonal labeling and three-dimensional imaging of living cells. Angew Chem, Int Ed. 2010;49:9422–5.

    Article  CAS  Google Scholar 

  34. Poloukhtine AA, Mbua NE, Wolfert MA, Boons G-J, Popik VV. Selective labeling of living cells by a photo-triggered click reaction. J Am Chem Soc. 2009;131:15769–76.

    Article  PubMed  CAS  Google Scholar 

  35. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20.

    Article  PubMed  CAS  Google Scholar 

  36. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47:113–31.

    Article  PubMed  CAS  Google Scholar 

  37. De P, Gondi SR, Sumerlin BS. Folate-conjugated thermoresponsive block copolymers: highly efficient conjugation and solution self-assembly. Biomacromolecules. 2008;9:1064–70.

    Article  PubMed  CAS  Google Scholar 

  38. Xu N, Wang R, Du F-S, Li Z-C. Synthesis of amphiphilic biodegradable glycocopolymers based on poly(ε-caprolactone) by ring-opening polymerization and click chemistry. J Polymer Sci, Part A: Polymer Chem. 2009;47:3583–94.

    Article  CAS  Google Scholar 

  39. Chen G, Amajjahe S, Stenzel MH. Synthesis of thiol-linked neoglycopolymers and thermo-responsive glycomicelles as potential drug carrier. Chem Commun. 2009;1198–200.

  40. Yang Y, Hua C, Dong C-M. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) triblock copolymers. Biomacromolecules. 2009;10:2310–8.

    Article  PubMed  CAS  Google Scholar 

  41. Peng S-M, Chen Y, Hua C, Dong C-M. Dendron-like polypeptide/linear poly(ethylene oxide) biohybrids with both asymmetrical and symmetrical topologies synthesized via the combination of click chemistry and ring-opening polymerization. Macromolecules. 2009;42:104–13.

    Article  CAS  Google Scholar 

  42. Hua C, Peng S-M, Dong C-M. Synthesis and characterization of linear-dendron-like poly(ε-caprolactone)-b-poly(ethylene oxide) copolymers via the combination of ring-opening polymerization and click chemistry. Macromolecules. 2008;41:6686–95.

    Article  CAS  Google Scholar 

  43. Soliman GM, Sharma R, Choi AO, Varshney SK, Winnik FM, Kakkar AK, et al. Tailoring the efficacy of nimodipine drug delivery using nanocarriers based on A2B miktoarm star polymers. Biomaterials. 2010;31:8382–92.

    Article  PubMed  CAS  Google Scholar 

  44. Quan C-Y, Chen J-X, Wang H-Y, Li C, Chang C, Zhang X-Z, et al. Core-shell nanosized assemblies mediated by the α-β cyclodextrin dimer with a tumor-triggered targeting property. ACS Nano. 2010;4:4211–9.

    Article  PubMed  CAS  Google Scholar 

  45. Lutz J-F, Pfeifer S, Zarafshani Z. “In situ” functionalization of thermoresponsive polymeric micelles using the “click” cycloaddition of azides and alkynes. QSAR Comb Sci. 2007;26:1151–8.

    Article  CAS  Google Scholar 

  46. Nicolas J, Couvreur P. Synthesis of poly(alkyl cyanoacrylate)-based colloidal nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:111–27.

    Article  PubMed  CAS  Google Scholar 

  47. Nicolas J, Bensaid F, Desmaële D, Grogna M, Detrembleur C, Andrieux K, et al. Synthesis of highly functionalized poly(alkyl cyanoacrylate) nanoparticles by means of click chemistry. Macromolecules. 2008;41:8418–28.

    Article  CAS  Google Scholar 

  48. Lu J, Shi M, Shoichet MS. Click chemistry functionalized polymeric nanoparticles target corneal epithelial cells through RGD-cell surface receptors. Bioconjugate Chem. 2009;20:87–94.

    Article  CAS  Google Scholar 

  49. Shi M, Wosnick JH, Ho K, Keating A, Shoichet MS. Immuno-polymeric nanoparticles by Diels-Alder chemistry. Angew Chem, Int Ed. 2007;46:6126–31.

    Article  CAS  Google Scholar 

  50. Shi M, Ho K, Keating A, Shoichet MS. Doxorubicin-conjugated immuno-nanoparticles for intracellular anticancer drug delivery. Adv Funct Mater. 2009;19:1689–96.

    Article  CAS  Google Scholar 

  51. An Z, Tang W, Wu M, Jiao Z and Stucky GD. Heterofunctional polymers and core-shell nanoparticles via cascade aminolysis/Michael addition and alkyne-azide click reaction of RAFT polymers. Chem Commun. 2008;6501–3.

  52. Bertin PA, Watson KJ, Nguyen ST. Indomethacin-containing nanoparticles derived from amphiphilic polynorbornene: a model ROMP-based drug encapsulation system. Macromolecules. 2004;37:8364–72.

    Article  CAS  Google Scholar 

  53. Bertin PA, Smith D, Nguyen ST. High-density doxorubicin-conjugated polymeric nanoparticles via ring-opening metathesis polymerization. Chem Commun. 2005;3793–5.

  54. Krovi SA, Smith D, Nguyen ST. “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization. Chem Commun. 2010;46:5277–9.

    Article  CAS  Google Scholar 

  55. Han Y, Shi Q, Hu J, Du Q, Chen X, Jing X. Grafting BSA onto poly[(L-lactide)-co-carbonate] microspheres by click chemistry. Macromol Biosci. 2008;8:638–44.

    Article  PubMed  CAS  Google Scholar 

  56. Shi Q, Chen X, Lu T, Jing X. The immobilization of proteins on biodegradable polymer fibers via click chemistry. Biomaterials. 2008;29:1118–26.

    Article  PubMed  CAS  Google Scholar 

  57. Shi Q, Huang Y, Chen X, Wu M, Sun J, Jing X. Hemoglobin conjugated micelles based on triblock biodegradable polymers as artificial oxygen carriers. Biomaterials. 2009;30:5077–85.

    Article  PubMed  CAS  Google Scholar 

  58. Wang X, Liu L, Luo Y, Zhao H. Bioconjugation of biotin to the interfaces of polymeric micelles via in situ click chemistry. Langmuir. 2009;25:744–50.

    Article  PubMed  CAS  Google Scholar 

  59. Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules. 1995;28:5294–9.

    Article  CAS  Google Scholar 

  60. Kabanov AV, Bronich TK, Kabanov VA, Yu K, Eisenberg A. Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions. Macromolecules. 1996;29:6797–802.

    Article  CAS  Google Scholar 

  61. Sousa-Herves A, Fernandez-Megia E, Riguera R. Synthesis and supramolecular assembly of clicked anionic dendritic polymers into polyion complex micelles. Chem Commun. 2008;3136–8.

  62. Zhang J, Zhou Y, Zhu Z, Ge Z, Liu S. Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via “click” chemistry. Macromolecules. 2008;41:1444–54.

    Article  CAS  Google Scholar 

  63. O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: functional nanostructures of great potential and versatility. Chem Soc Rev. 2006;35:1068–83.

    Article  PubMed  CAS  Google Scholar 

  64. Read ES, Armes SP. Recent advances in shell cross-linked micelles. Chem Commun. 2007;3021–35.

  65. Joralemon MJ, O’Reilly RK, Hawker CJ, Wooley KL. Shell click-crosslinked (SCC) nanoparticles: a new methodology for synthesis and orthogonal functionalization. J Am Chem Soc. 2005;127:16892–9.

    Article  PubMed  CAS  Google Scholar 

  66. O’Reilly RK, Joralemon MJ, Hawker CJ, Wooley KL. Preparation of orthogonally-functionalized core click cross-linked nanoparticles. New J Chem. 2007;31:718–24.

    Article  CAS  Google Scholar 

  67. Jiang X, Zhang J, Zhou Y, Xu J, Liu S. Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry. J Polymer Sci, Part A: Polymer Chem. 2008;46:860–71.

    Article  CAS  Google Scholar 

  68. Jiang X, Zhang G, Narain R, Liu S. Fabrication of two types of shell-cross-linked micelles with “inverted” structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry. Langmuir. 2009;25:2046–54.

    Article  PubMed  CAS  Google Scholar 

  69. Withey ABJ, Chen G, Nguyen TLU, Stenzel MH. Macromolecular cobalt carbonyl complexes encapsulated in a click-cross-linked micelle structure as a nanoparticle to deliver cobalt pharmaceuticals. Biomacromolecules. 2009;10:3215–26.

    Article  PubMed  CAS  Google Scholar 

  70. Lallana E, Fernandez-Megia E, Riguera R. Surpassing the use of copper in the click functionalization of polymeric nanostructures: a strain-promoted approach. J Am Chem Soc. 2009;131:5748–50.

    Article  PubMed  CAS  Google Scholar 

  71. Sawant RR, Torchilin VP. Liposomes as “smart” pharmaceutical nanocarriers. Soft Matter. 2010;6:4026–44.

    Article  CAS  Google Scholar 

  72. Hassane FS, Frisch B, Schuber F. Targeted liposomes: convenient coupling of ligands to preformed vesicles using “click chemistry”. Bioconjugate Chem. 2006;17:849–54.

    Article  CAS  Google Scholar 

  73. Cavalli S, Tipton AR, Overhand M, Kros A. The chemical modification of liposome surfaces via a copper-mediated [3 + 2] azide-alkyne cycloaddition monitored by a colorimetric assay. Chem Commun. 2006;3193–5.

  74. Kumar A, Erasquin UJ, Qin G, Li K, Cai C. “Clickable”, polymerized liposomes as a versatile and stable platform for rapid optimization of their peripheral compositions. Chem Commun. 2010;46:5746–8.

    Article  CAS  Google Scholar 

  75. Discher BM, Won Y-Y, Ege DS, Lee JC-M, Bates FS, Discher DE, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284:1143–6.

    Article  PubMed  CAS  Google Scholar 

  76. LoPresti C, Lomas H, Massignani M, Smart T, Battaglia G. Polymersomes: nature inspired nanometer sized compartments. J Mater Chem. 2009;19:3576–90.

    Article  CAS  Google Scholar 

  77. Opsteen JA, Brinkhuis RP, Teeuwen RLM, Löwik DWPM, van Hest JCM. “Clickable” polymersomes. Chem Commun. 2007;3136–8.

  78. Li B, Martin AL, Gillies ER. Multivalent polymer vesicles via surface functionalization. Chem Commun. 2007;5217–9.

  79. Martin AL, Li B, Gillies ER. Surface functionalization of nanomaterials with dendritic groups: toward enhanced binding to biological targets. J Am Chem Soc. 2009;131:734–41.

    Article  PubMed  CAS  Google Scholar 

  80. Lee S-M, Chen H, Dettmer CM, O’Halloran TV, Nguyen ST. Polymer-caged lipsomes: a pH-responsive delivery system with high stability. J Am Chem Soc. 2007;129:15096–7.

    Article  PubMed  CAS  Google Scholar 

  81. Lee S-M, Chen H, O’Halloran TV, Nguyen ST. “Clickable” polymer-caged nanobins as a modular drug delivery platform. J Am Chem Soc. 2009;131:9311–20.

    Article  PubMed  CAS  Google Scholar 

  82. Quinn JF, Johnston APR, Such GK, Zelikin AN, Caruso F. Next generation, sequentially assembled ultrathin films: beyond electrostatics. Chem Soc Rev. 2007;36:707–18.

    Article  PubMed  CAS  Google Scholar 

  83. Such GK, Tjipto E, Postma A, Johnston APR, Caruso F. Ultrathin, responsive polymer click capsules. Nano Lett. 2007;7:1706–10.

    Article  PubMed  CAS  Google Scholar 

  84. Ochs CJ, Such GK, Städler B, Caruso F. Low-fouling, biofunctionalized, and biodegradable click capsules. Biomacromolecules. 2008;9:3389–96.

    Article  PubMed  CAS  Google Scholar 

  85. De Geest BG, Van Camp W, Du Prez FE, De Smedt SC, Demeester J, Hennink WE. Degradable multilayer films and hollow capsules via a “click” strategy. Macromol Rapid Commun. 2008;29:1111–8.

    Article  CAS  Google Scholar 

  86. De Geest BG, Van Camp W, Du Prez FE, De Smedt SC, Demeester J, Hennink WE. Biodegradable microcapsules designed via ‘click’ chemistry. Chem Commun. 2008;190–2.

  87. Connal LA, Kinnane CR, Zelikin AN, Caruso F. Stabilization and functionalization of polymer multilayers and capsules via thiol-ene click chemistry. Chem Mater. 2009;21:576–8.

    Article  CAS  Google Scholar 

  88. Kamphuis MMJ, Johnston APR, Such GK, Dam HH, Evans RA, Scott AM, et al. Targeting of cancer cells using click-functionalized polymer capsules. J Am Chem Soc. 2010;132:15881–3.

    Article  PubMed  CAS  Google Scholar 

  89. Ochs CJ, Such GK, Yan Y, van Koeverden MP, Caruso F. Biodegradable click capsules with engineered drug-loaded multilayers. ACS Nano. 2010;4:1653–63.

    Article  PubMed  CAS  Google Scholar 

  90. Kim D, Kim E, Lee J, Hong S, Sung W, Lim N, et al. Direct synthesis of polymer nanocapsules: self-assembly of polymer hollow spheres through irreversible covalent bond formation. J Am Chem Soc. 2010;132:9908–19.

    Article  PubMed  CAS  Google Scholar 

  91. Breed DR, Thibault R, Xie F, Wang Q, Hawker CJ, Pine DJ. Functionalization of polymer microspheres using click chemistry. Langmuir. 2009;25:4370–6.

    Article  PubMed  CAS  Google Scholar 

  92. Goldmann AS, Walther A, Nebhani L, Joso R, Ernst D, Loos K, et al. Surface modification of poly(divinylbenzene) microspheres via thiol-ene chemistry and alkyne-azide click reactions. Macromolecules. 2009;42:3707–14.

    Article  CAS  Google Scholar 

  93. Arruebo M, Fernández-Pacheco R, Ibarra MR, Santamaría J. Magnetic nanoparticles for drug delivery. Nano Today. 2007;2:22–32.

    Article  Google Scholar 

  94. Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008;37:1896–908.

    Article  PubMed  CAS  Google Scholar 

  95. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;38:1759–82.

    Article  PubMed  CAS  Google Scholar 

  96. Fleming DA, Thode CJ, Williams ME. Triazole cycloaddition as a general route for functionalization of Au nanoparticles. Chem Mater. 2006;18:2327–34.

    Article  CAS  Google Scholar 

  97. Boisselier E, Salmon L, Ruiz J, Astruc D. How to very efficiently functionalize gold nanoparticles by “click” chemistry. Chem Commun. 2008;5788–90.

  98. Brennan JL, Hatzakis NS, Tshikhudo TR, Dirvianskyte N, Razumas V, Patkar S, et al. Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate Chem. 2006;17:1373–5.

    Article  CAS  Google Scholar 

  99. Kim Y-P, Daniel WL, Xia Z, Xie H, Mirkin CA, Rao J. Bioluminescent nanosensors for protease detection based upon gold nanoparticle-luciferase conjugates. Chem Commun. 2010;46:76–8.

    Article  CAS  Google Scholar 

  100. Fischler M, Sologubenko A, Mayer J, Clever G, Burley G, Gierlich J, Carell T, Simon U. Chain-like assembly of gold nanoparticles on artificial DNA templates via “click chemistry”. Chem Commun. 2008;169–71.

  101. Zhang M-X, Huang B-H, Sun X-Y, Pang D-W. Clickable gold nanoparticles as the building block of nanobioprobes. Langmuir. 2010;26:10171–6.

    Article  PubMed  CAS  Google Scholar 

  102. Li H, Yao Y, Han C, Zhan J. Triazole-ester modified silver nanoparticles: click synthesis and Cd2+ colorimetric sensing. Chem Commun. 2009;4812–4.

  103. Yao Y, Tian D, Li H. Cooperative binding of bifunctionalized and click-synthesized silver nanoparticles for colorimetric Co2+ sensing. ACS Appl Mater Interfaces. 2010;2:684–90.

    Article  PubMed  CAS  Google Scholar 

  104. Drockenmuller E, Colinet I, Damiron D, Gal F, Perez H, Carrot G. Efficient approaches for the surface modification of platinum nanoparticles via click chemistry. Macromolecules. 2010;43:9371–5.

    Article  CAS  Google Scholar 

  105. Koenig S, Chechik V. Shell cross-linked Au nanoparticles. Langmuir. 2006;22:5168–73.

    Article  PubMed  CAS  Google Scholar 

  106. Costanzo PJ, Beyer FL. Thermally driven assembly of nanoparticles in polymer matrices. Macromolecules. 2007;40:3996–4001.

    Article  CAS  Google Scholar 

  107. Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14:2161–75.

    Article  CAS  Google Scholar 

  108. White MA, Johnson JA, Koberstein JT, Turro NJ. Toward the syntheses of universal ligands for metal oxide surfaces: controlling surface functionality through click chemistry. J Am Chem Soc. 2006;128:11356–7.

    Article  PubMed  CAS  Google Scholar 

  109. Lin PC, Ueng SH, Yu SC, Jan MD, Adak AK, Yu CC, et al. Surface modification of magnetic nanoparticle via Cu(I)-catalyzed alkyne-azide [2 + 3] cycloaddition. Org Lett. 2007;9:2131–4.

    Article  PubMed  CAS  Google Scholar 

  110. Lin P-C, Ueng S-H, Tseng M-C, Ko J-L, Huang K-T, Yu S-C, et al. Site-specific protein modification through CuI-catalyzed 1,2,3-triazole formation and its implementation in protein microarray fabrication. Angew Chem, Int Ed. 2006;45:4286–90.

    Article  CAS  Google Scholar 

  111. Polito L, Monti D, Caneva E, Delnevo E, Russo G, Prosperi D. One-step bioengineering of magnetic nanoparticles via a surface diazo transfer/azide-alkyne click reaction sequence. Chem Commun. 2008;621–3.

  112. Nyffeler PT, Liang C-H, Koeller KM, Wong C-H. The chemistry of amine-azide interconversion: catalytic diazotransfer and regioselective azide reduction. J Am Chem Soc. 2002;124:10773–8.

    Article  PubMed  CAS  Google Scholar 

  113. Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA. Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett. 2010;10:1477–80.

    Article  PubMed  CAS  Google Scholar 

  114. Elias DR, Cheng Z, Tsourkas A. An intein-mediated site-specific click conjugation strategy for improved tumor targeting of nanoparticle systems. Small. 2010;6:2460–8.

    Article  PubMed  CAS  Google Scholar 

  115. Hayashi K, Moriya M, Sakamoto W, Yogo T. Chemoselective synthesis of folic acid-functionalized magnetite nanoparticles via click chemistry for magnetic hyperthermia. Chem Mater. 2009;21:1318–25.

    Article  CAS  Google Scholar 

  116. Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, et al. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. ACS Appl Mater Interfaces. 2010;2:1903–11.

    Article  PubMed  CAS  Google Scholar 

  117. Santra S, Kaittanis C, Grimm J, Perez JM. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small. 2009;5:1862–8.

    Article  PubMed  CAS  Google Scholar 

  118. Devaraj NK, Keliher EJ, Thurber GM, Nahrendorf M, Weissleder R. 18 F labeled nanoparticles for in vivo PET-CT imaging. Bioconjugate Chem. 2009;20:397–401.

    Article  CAS  Google Scholar 

  119. Nahrendorf M, Keliher E, Marinelli B, Waterman P, Feruglio PF, Fexon L, et al. Hybrid PET-optical imaging using targeted probes. Proc Natl Acad Sci USA. 2010;107:7910–5.

    Article  PubMed  Google Scholar 

  120. von Maltzahn G, Ren Y, Park J-H, Min D-H, Kotamraju VR, Jayakumar J, et al. In vivo tumor cell targeting with “click” nanoparticles. Bioconjugate Chem. 2008;19:1570–8.

    Article  CAS  Google Scholar 

  121. Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, et al. One-pot biofunctionalization of magnetic nanoparticles via thiol−ene click reaction for magnetic hyperthermia and magnetic resonance imaging. Chem Mater. 2010;22:3768–72.

    Article  CAS  Google Scholar 

  122. Rutledge RD, Warner CL, Pittman JW, Addleman RS, Engelhard M, Chouyyok W, et al. Thiol−ene induced diphosphonic acid functionalization of superparamagnetic iron oxide nanoparticles. Langmuir. 2010;26:12285–92.

    Article  PubMed  CAS  Google Scholar 

  123. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307:538–44.

    Article  PubMed  CAS  Google Scholar 

  124. Binder WH, Sachsenhofer R, Straif CJ, Zirbs R. Surface-modified nanoparticles via thermal and Cu(I)-mediated “click” chemistry: generation of luminescent CdSe nanoparticles with polar ligands guiding supramolecular recognition. J Mater Chem. 2007;17:2125–32.

    Article  CAS  Google Scholar 

  125. Bernardin A, Cazet A, Guyon L, Delannoy P, Vinet F, Texier I, et al. Copper-free click chemistry for highly luminescent quantum dot conjugates: application to in vivo metabolic imaging. Bioconjugate Chem. 2010;21:583–8.

    Article  CAS  Google Scholar 

  126. Han H-S, Devaraj NK, Lee J, Hilderbrand SA, Weissleder R, Bawendi MG. Development of a bioorthogonal and highly efficient conjugation method for quantum dots using tetrazine-norbornene cycloaddition. J Am Chem Soc. 2010;132:7838–9.

    Article  PubMed  CAS  Google Scholar 

  127. Slowing II, Trewyn BG, Giri S, Lin VSY. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv Funct Mater. 2007;17:1225–36.

    Article  CAS  Google Scholar 

  128. Ranjan R, Brittain WJ. Combination of living radical polymerization and click chemistry for surface modification. Macromolecules. 2007;40:6217–23.

    Article  CAS  Google Scholar 

  129. Ranjan R, Brittain WJ. Tandem RAFT polymerization and click chemistry: an efficient approach to surface modification. Macromol Rapid Commun. 2007;28:2084–9.

    Article  CAS  Google Scholar 

  130. Zhang J, Wang X, Wu D, Liu L, Zhao H. Bioconjugated Janus particles prepared by in situ click chemistry. Chem Mater. 2009;21:4012–8.

    Article  CAS  Google Scholar 

  131. Müllner M, Schallon A, Walther A, Freitag R, Müller AHE. Clickable, biocompatible, and fluorescent hybrid nanoparticles for intracellular delivery and optical imaging. Biomacromolecules. 2010;11:390–6.

    Article  PubMed  CAS  Google Scholar 

  132. Kele P, Mezö G, Achatz D, Wolfbeis OS. Dual labeling of biomolecules by using click chemistry: a sequential approach. Angew Chem, Int Ed. 2009;48:344–7.

    Article  CAS  Google Scholar 

  133. Achatz DE, Mezö G, Kele P, Wolfbeis OS. Probing the activity of matrix metalloproteinase II with a sequentially click-labeled silica nanoparticle FRET probe. Chembiochem. 2009;10:2316–20.

    Article  PubMed  CAS  Google Scholar 

  134. Schlossbauer A, Warncke S, Gramlich PME, Kecht J, Manetto A, Carell T, et al. A programmable DNA-based molecular valve for colloidal mesoporous silica. Angew Chem, Int Ed. 2010;49:4734–7.

    CAS  Google Scholar 

  135. Guldi DM, Rahman GMA, Sgobba V, Ehli C. Multifunctional molecular carbon materials-from fullerenes to carbon nanotubes. Chem Soc Rev. 2006;35:471–87.

    Article  PubMed  CAS  Google Scholar 

  136. Bianco A, Kostarelos K, Partidos CD, Prato M. Biomedical applications of functionalised carbon nanotubes. Chem Commun. 2005;571–7.

  137. Partha R, Conyers JL. Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomed. 2009;4:261–75.

    Article  CAS  Google Scholar 

  138. Li H, Cheng F, Duft AM, Adronov A. Functionalization of single-walled carbon nanotubes with well-defined polystyrene by “click” coupling. J Am Chem Soc. 2005;127:14518–24.

    Article  PubMed  CAS  Google Scholar 

  139. Guo Z, Liang L, Liang J-J, Ma Y-F, Yang X-Y, Ren D-M, et al. Covalently β-cyclodextrin modified single-walled carbon nanotubes: a novel artificial receptor synthesized by “click” chemistry. J Nanopart Res. 2008;10:1077–83.

    Article  CAS  Google Scholar 

  140. Zhang Y, He H, Gao C. Clickable macroinitiator strategy to build amphiphilic polymer brushes on carbon nanotubes. Macromolecules. 2008;41:9581–94.

    Article  CAS  Google Scholar 

  141. Voggu R, Pal S, Pati SK, Rao CNR. Semiconductor to metal transition in SWNTs caused by interaction with gold and platinum nanoparticles. J Phys Condens Matter. 2008;20:215211.

    Article  CAS  Google Scholar 

  142. He H, Zhang Y, Gao C, Wu JY. ‘Clicked’ magnetic nanohybrids with a soft polymer interlayer. Chem Commun. 2009;1655–7.

  143. Palacin T, Khanh HL, Jousselme B, Jegou P, Filoramo A, Ehli C, et al. Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J Am Chem Soc. 2009;131:15394–402.

    Article  PubMed  CAS  Google Scholar 

  144. Wu P, Chen X, Hu N, Tam UC, Blixt O, Zettl A, et al. Biocompatible carbon nanotubes generated by functionalization with glycodendrimers. Angew Chem Inter Ed. 2008;47:5022–5.

    Article  CAS  Google Scholar 

  145. Isobe H, Cho K, Solin N, Werz DB, Seeberger PH, Nakamura E. Synthesis of fullerene glycoconjugates via a copper-catalyzed Huisgen cycloaddition reaction. Org Lett. 2007;9:4611–4.

    Article  PubMed  CAS  Google Scholar 

  146. Iehl J, Pereira de Freitas R, Delavaux-Nicot B, Nierengarten J-F. Click chemistry for the efficient preparation of functionalized [60]fullerene hexakis-adducts. Chem Commun. 2008;2450–2452.

  147. Iehl J, Nierengarten J-F. A click-click approach for the preparation of functionalized [5:1]-hexaadducts of C60. Chem Eur J. 2009;15:7306–9.

    Article  PubMed  CAS  Google Scholar 

  148. Compain P, Decroocq C, Iehl J, Holler M, Hazelard D, Mena Barragán T, et al. Glycosidase inhibition with fullerene iminosugar balls: a dramatic multivalent effect. Angew Chem, Int Ed. 2010;49:5753–6.

    Article  CAS  Google Scholar 

  149. Zhang W-B, Tu Y, Ranjan R, van Horn RM, Leng S, Wang J, et al. “Clicking” fullerene with polymers: synthesis of [60]fullerene end-capped polystyrene. Macromolecules. 2008;41:515–7.

    Article  CAS  Google Scholar 

  150. Steinmetz NF, Hong V, Spoerke ED, Lu P, Breitenkamp K, Finn MG, et al. Buckyballs meet viral nanoparticles: candidates for biomedicine. J Am Chem Soc. 2009;131:17093–5.

    Article  PubMed  CAS  Google Scholar 

  151. Cremonini MA, Lunazzi L, Placucci G, Krusic PJ. Addition of alkylthiyl and alkoxy radicals to C60 studied by ESR. J Org Chem. 1993;58:4735–8.

    Article  CAS  Google Scholar 

  152. Iehl J, Nierengarten J-F. Sequential copper catalyzed alkyne-azide and thiol-ene click reactions for the multiple functionalization of fullerene hexaadducts. Chem Commun. 2010;46:4160–2.

    Article  CAS  Google Scholar 

  153. Lee LA, Wang Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine: NBM. 2006;2:137–49.

    Article  CAS  Google Scholar 

  154. Gupta SS, Raja KS, Kaltgrad E, Strable E, Finn MG. Virus-glycopolymer conjugates by copper(I) catalysis of atom transfer radical polymerization and azide-alkyne cycloaddition. Chem Commun. 2005;4315–7.

  155. Prasuhn JDE, Yeh RM, Obenaus A, Manchester M, Finn MG. Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. Chem Commun. 2007;1269–71.

  156. Kaltgrad E, Sen Gupta S, Punna S, Huang C-Y, Chang A, Wong C-H, et al. Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold. Chembiochem. 2007;8:1455–62.

    Article  PubMed  CAS  Google Scholar 

  157. Destito G, Yeh R, Rae CS, Finn MG, Manchester M. Folic acid-mediated targeting of Cowpea mosaic virus particles to tumor cells. Chem Biol. 2007;14:1152–62.

    Article  PubMed  CAS  Google Scholar 

  158. Strable E, Prasuhn DE, Udit AK, Brown S, Link AJ, Ngo JT, et al. Unnatural amino acid incorporation into virus-like particles. Bioconjugate Chem. 2008;19:866–75.

    Article  CAS  Google Scholar 

  159. Steinmetz NF, Mertens ME, Taurog RE, Johnson JE, Commandeur U, Fischer R, et al. Potato virus X as a novel platform for potential biomedical applications. Nano Lett. 2010;10:305–12.

    Article  PubMed  CAS  Google Scholar 

  160. Zeng Q, Li T, Cash B, Li S, Xie F, Wang Q. Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction. Chem Commun. 2007;1453–5.

  161. Banerjee PS, Ostapchuk P, Hearing P, Carrico I. Chemoselective attachment of small molecule effector functionality to human adenoviruses facilitates gene delivery to cancer cells. J Am Chem Soc. 2010;132:13615–7.

    Article  PubMed  CAS  Google Scholar 

  162. Abedin MJ, Liepold L, Suci P, Young M, Douglas T. Synthesis of a cross-linked branched polymer network in the interior of a protein cage. J Am Chem Soc. 2009;131:4346–54.

    Article  PubMed  CAS  Google Scholar 

  163. Lucon J, Abedin MJ, Uchida M, Liepold L, Jolley CC, Young M, et al. A click chemistry based coordination polymer inside small heat shock protein. Chem Commun. 2010;46:264–6.

    Article  CAS  Google Scholar 

  164. Banerjee D, Liu AP, Voss NR, Schmid SL, Finn MG. Multivalent display and receptor-mediated endocytosis of transferrin on virus-like particles. Chembiochem. 2010;11:1273–9.

    Article  PubMed  CAS  Google Scholar 

  165. Hong V, Steinmetz NF, Manchester M, Finn MG. Labeling live cells by copper-catalyzed alkyne-azide click chemistry. Bioconjugate Chem. 2010;21:1912–6.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was financially supported by the Spanish Ministry of Science and Innovation (CTQ2009-10963 and CTQ2009-14146-C02-02) and the Xunta de Galicia (10CSA209021PR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Fernandez-Megia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lallana, E., Sousa-Herves, A., Fernandez-Trillo, F. et al. Click Chemistry for Drug Delivery Nanosystems. Pharm Res 29, 1–34 (2012). https://doi.org/10.1007/s11095-011-0568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0568-5

KEY WORDS

Navigation