Skip to main content

Advertisement

Log in

A Markov Chain Model to Evaluate the Effect of CYP3A5 and ABCB1 Polymorphisms on Adverse Events Associated with Tacrolimus in Pediatric Renal Transplantation

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The SNP A6986G of the CYP3A5 gene (*3) results in a non-functional protein due to a splicing defect whereas the C3435T was associated with variable expression of the ABCB1 gene, due to protein instability. Part of the large interindividual variability in tacrolimus efficacy and toxicity can be accounted for by these genetic factors. Seventy-two individuals were examined for A6986G and C3435T polymorphism using a PCR-RFLP-based technique to estimate genotype and allele frequencies in the Jordanian population. The association of age, hematocrit, platelet count, CYP3A5, and ABCB1 polymorphisms with tacrolimus dose- and body-weight-normalized levels in the subset of 38 pediatric renal transplant patients was evaluated. A Markov model was used to evaluate the time-dependent probability of an adverse event occurrence by CYP3A5 phenotypes and ABCB1 genotypes. The time-dependent probability of adverse event was about double in CYP3A5 non-expressors compared to the expressors for the first 12 months of therapy. The CYP3A5 non-expressors had higher corresponding normalized tacrolimus levels compared to the expressors in the first 3 months. The correlation trend between probability of adverse events and normalized tacrolimus concentrations for the two CYP3A5 phenotypes persisted for the first 9 months of therapy. The differences among ABCB1 genotypes in terms of adverse events and normalized tacrolimus levels were only observed in the first 3 months of therapy. The information on CYP3A5 genotypes and tacrolimus dose requirement is important in designing effective programs toward management of tacrolimus side effects particularly for the initial dose when tacrolimus blood levels are not available for therapeutic drug monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53.

    Article  PubMed  CAS  Google Scholar 

  2. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet. 2010;49(4):207–21. doi:10.2165/11317550-000000000-000001.

    Article  PubMed  CAS  Google Scholar 

  3. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos. 2006;34(5):836–47. doi:10.1124/dmd.105.008680.

    Article  PubMed  CAS  Google Scholar 

  4. Zheng H, Webber S, Zeevi A, Schuetz E, Zhang J, Bowman P, et al. Tacrolimus dosing in pediatric heart transplant patients is related to CYP3A5 and MDR1 gene polymorphisms. Am J Transplant. 2003;3(4):477–83.

    Article  PubMed  CAS  Google Scholar 

  5. Zheng H, Zeevi A, Schuetz E, Lamba J, McCurry K, Griffith BP, et al. Tacrolimus dosing in adult lung transplant patients is related to cytochrome P4503A5 gene polymorphism. J Clin Pharmacol. 2004;44(2):135–40. doi:10.1177/009127000326210844/2/135.

    Article  PubMed  CAS  Google Scholar 

  6. Thervet E, Anglicheau D, King B, Schlageter MH, Cassinat B, Beaune P, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation. 2003;76(8):1233–5. doi:10.1097/01.TP.0000090753.99170.89.

    Article  PubMed  CAS  Google Scholar 

  7. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000;97(7):3473–8. doi:10.1073/pnas.050585397050585397.

    Article  PubMed  CAS  Google Scholar 

  8. Fellay J, Marzolini C, Meaden ER, Back DJ, Buclin T, Chave JP, et al. Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet. 2002;359(9300):30–6. doi:10.1016/S0140-6736(02)07276-8.

    Article  PubMed  CAS  Google Scholar 

  9. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet. 2010;49(3):141–75. doi:10.2165/11317350-000000000-000001.

    Article  PubMed  CAS  Google Scholar 

  10. Hawwa AF, McKiernan PJ, Shields M, Millership JS, Collier PS, McElnay JC. Influence of ABCB1 polymorphisms and haplotypes on tacrolimus nephrotoxicity and dosage requirements in children with liver transplant. Br J Clin Pharmacol. 2009;68(3):413–21. doi:10.1111/j.1365-2125.2009.03461.x.

    Article  PubMed  CAS  Google Scholar 

  11. Herrlinger KR, Koc H, Winter S, Teml A, Stange EF, Fellermann K, et al. ABCB1 single-nucleotide polymorphisms determine tacrolimus response in patients with ulcerative colitis. Clin Pharmacol Ther. 2011;89(3):422–8. doi:10.1038/clpt.2010.348.

    Article  PubMed  CAS  Google Scholar 

  12. Choi JH, Lee YJ, Jang SB, Lee JE, Kim KH, Park K. Influence of the CYP3A5 and MDR1 genetic polymorphisms on the pharmacokinetics of tacrolimus in healthy Korean subjects. Br J Clin Pharmacol. 2007;64(2):185–91. doi:10.1111/j.1365-2125.2007.02874.x.

    Article  PubMed  CAS  Google Scholar 

  13. Mai I, Perloff ES, Bauer S, Goldammer M, Johne A, Filler G, et al. MDR1 haplotypes derived from exons 21 and 26 do not affect the steady-state pharmacokinetics of tacrolimus in renal transplant patients. Br J Clin Pharmacol. 2004;58(5):548–53. doi:10.1111/j.1365-2125.2004.02182.x.

    Article  PubMed  CAS  Google Scholar 

  14. Wang J, Zeevi A, McCurry K, Schuetz E, Zheng H, Iacono A, et al. Impact of ABCB1 (MDR1) haplotypes on tacrolimus dosing in adult lung transplant patients who are CYP3A5 *3/*3 non-expressors. Transpl Immunol. 2006;15(3):235–40. doi:10.1016/j.trim.2005.08.001.

    Article  PubMed  Google Scholar 

  15. MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant. 2004;4(6):914–9. doi:10.1111/j.1600-6143.2004.00435.xAJT435.

    Article  PubMed  CAS  Google Scholar 

  16. Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther. 2010;87(6):721–6. doi:10.1038/clpt.2010.17.

    PubMed  CAS  Google Scholar 

  17. de Jonge H, de Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin Pharmacol Ther. 2012;92(3):366–75. doi:10.1038/clpt.2012.109.

    Article  PubMed  Google Scholar 

  18. Sy SK, Singh RP, Shilbayeh S, Zmeili R, Conrado D, Derendorf H. Influence of CYP3A5 6986A>G and ABCB1 3435C>T polymorphisms on adverse events associated with tacrolimus in Jordanian pediatric renal transplant patients. Clin Pharmacol Drug Dev. 2013;2(1):67–78. doi:10.1002/cpdd.22.

    Article  Google Scholar 

  19. Shilbayeh S, Hazza I. Pediatric renal transplantation in the Jordanian population: the clinical outcome measures during long-term follow-up period. Pediatr Neonatol. 2012;53(1):24–33. doi:10.1016/j.pedneo.2011.11.006.

    Article  PubMed  Google Scholar 

  20. Bass RF. Stochastic processes. Cambridge: Cambridge University Press; 2011.

    Book  Google Scholar 

  21. Lacroix BD, Lovern MR, Stockis A, Sargentini-Maier ML, Karlsson MO, Friberg LE. A pharmacodynamic Markov mixed-effects model for determining the effect of exposure to certolizumab pegol on the ACR20 score in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2009;86(4):387–95. doi:10.1038/clpt.2009.136.

    Article  PubMed  CAS  Google Scholar 

  22. Ouellet D, Sutherland S, Wang T, Griffini P, Murthy V. First-time-in-human study with GSK1018921, a selective GlyT1 inhibitor: relationship between exposure and dizziness. Clin Pharmacol Ther. 2011;90(4):597–604. doi:10.1038/clpt.2011.154.

    Article  PubMed  CAS  Google Scholar 

  23. Bizzotto R, Zamuner S, Mezzalana E, De Nicolao G, Gomeni R, Hooker AC, et al. Multinomial logistic functions in Markov chain models of sleep architecture: internal and external validation and covariate analysis. AAPS J. 2011;13(3):445–63. doi:10.1208/s12248-011-9287-4.

    Article  PubMed  Google Scholar 

  24. Peng Z, Bao C, Zhao Y, Yi H, Xia L, Yu H, et al. Weighted Markov chains for forecasting and analysis in incidence of infectious diseases in Jiangsu Province, China. J Biomed Res. 2010;24(3):207–14. doi:10.1016/S1674-8301(10)60030-9.

    Article  PubMed  Google Scholar 

  25. Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ, et al. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos. 2005;33(7):884–7. doi:10.1124/dmd.105.003822.

    Article  PubMed  CAS  Google Scholar 

  26. Bhatnagar V, Garcia EP, O’Connor DT, Brophy VH, Alcaraz J, Richard E, et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol. 2010;31(2):95–103. doi:10.1159/000258688.

    Article  PubMed  CAS  Google Scholar 

  27. Rao DN, Manjula G, Sailaja K, Surekha D, Raghunadharao D, Rajappa S, et al. Association of CYP3A5*3 polymorphism with development of acute leukemia. Indian J Hum Genet. 2011;17(3):175–8. doi:10.4103/0971-6866.92098.

    Article  PubMed  CAS  Google Scholar 

  28. Cho JH, Yoon YD, Park JY, Song EJ, Choi JY, Yoon SH, et al. Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients. Transplant Proc. 2012;44(1):109–14. doi:10.1016/j.transproceed.2011.11.004.

    Article  PubMed  CAS  Google Scholar 

  29. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;86(6):609–18. doi:10.1038/clpt.2009.210.

    Article  PubMed  CAS  Google Scholar 

  30. de Wildt SN, van Schaik RH, Soldin OP, Soldin SJ, Brojeni PY, van der Heiden IP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011;67(12):1231–41. doi:10.1007/s00228-011-1083-7.

    Article  PubMed  CAS  Google Scholar 

  31. Gijsen V, Mital S, van Schaik RH, Soldin OP, Soldin SJ, van der Heiden IP, et al. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients. J Heart Lung Transplant. 2011;30(12):1352–9. doi:10.1016/j.healun.2011.08.001.

    Article  PubMed  Google Scholar 

  32. Kim JS, Aviles DH, Silverstein DM, Leblanc PL, Matti VV. Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant. 2005;9(2):162–9. doi:10.1111/j.1399-3046.2005.00263.x.

    Article  PubMed  CAS  Google Scholar 

  33. Naesens M, Salvatierra O, Li L, Kambham N, Concepcion W, Sarwal M. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation. 2008;85(8):1139–45. doi:10.1097/TP.0b013e31816b431a.

    Article  PubMed  CAS  Google Scholar 

  34. Sy SK, Johnston JA, Class CF, Roberts EA, Kalow W, Tang BK. Mulitvariate cluster analysis of a human hepatic cytochrome P450 database. Eur J Clin Pharmacol. 2002;58(8):559–62.

    Article  PubMed  CAS  Google Scholar 

  35. Sy SK, Ciaccia A, Li W, Roberts EA, Okey A, Kalow W, et al. Modeling of human hepatic CYP3A4 enzyme kinetics, protein, and mRNA indicates deviation from log-normal distribution in CYP3A4 gene expression. Eur J Clin Pharmacol. 2002;58(5):357–65. doi:10.1007/s00228-002-0487-9.

    Article  PubMed  CAS  Google Scholar 

  36. Montini G, Ujka F, Varagnolo C, Ghio L, Ginevri F, Murer L, et al. The pharmacokinetics and immunosuppressive response of tacrolimus in paediatric renal transplant recipients. Pediatr Nephrol. 2006;21(5):719–24. doi:10.1007/s00467-006-0014-9.

    Article  PubMed  Google Scholar 

  37. Yasuhara M, Hashida T, Toraguchi M, Hashimoto Y, Kimura M, Inui K, et al. Pharmacokinetics and pharmacodynamics of FK 506 in pediatric patients receiving living-related donor liver transplantations. Transplant Proc. 1995;27(1):1108–10.

    PubMed  CAS  Google Scholar 

  38. Wallemacq PE, Furlan V, Moller A, Schafer A, Stadler P, Firdaous I, et al. Pharmacokinetics of tacrolimus (FK506) in paediatric liver transplant recipients. Eur J Drug Metab Pharmacokinet. 1998;23(3):367–70.

    Article  PubMed  CAS  Google Scholar 

  39. Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–75.

    Article  PubMed  CAS  Google Scholar 

  40. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.

    Article  PubMed  Google Scholar 

  41. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82. doi:10.1124/jpet.103.054841.

    Article  PubMed  CAS  Google Scholar 

  42. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91. doi:10.1038/86882 86882.

    Article  PubMed  CAS  Google Scholar 

  43. Dally H, Bartsch H, Jager B, Edler L, Schmezer P, Spiegelhalder B, et al. Genotype relationships in the CYP3A locus in Caucasians. Cancer Lett. 2004;207(1):95–9. doi:10.1016/j.canlet.2003.12.011.

    Article  PubMed  CAS  Google Scholar 

  44. Gervasini G, Vizcaino S, Gasiba C, Carrillo JA, Benitez J. Differences in CYP3A5*3 genotype distribution and combinations with other polymorphisms between Spaniards and Other Caucasian populations. Ther Drug Monit. 2005;27(6):819–21.

    Article  PubMed  CAS  Google Scholar 

  45. Sinues B, Vicente J, Fanlo A, Vasquez P, Medina JC, Mayayo E, et al. CYP3A5*3 and CYP3A4*1B allele distribution and genotype combinations: differences between Spaniards and Central Americans. Ther Drug Monit. 2007;29(4):412–6. doi:10.1097/FTD.0b013e31811f390a.

    Article  PubMed  CAS  Google Scholar 

  46. Ameyaw MM, Regateiro F, Li T, Liu X, Tariq M, Mobarek A, et al. MDR1 pharmacogenetics: frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics. 2001;11(3):217–21.

    Article  PubMed  CAS  Google Scholar 

  47. Ostrovsky O, Nagler A, Korostishevsky M, Gazit E, Galski H. Genotype and allele frequencies of C3435T polymorphism of the MDR1 gene in various Jewish populations of Israel. Ther Drug Monit. 2004;26(6):679–84.

    Article  PubMed  CAS  Google Scholar 

  48. Santos PC, Soares RA, Santos DB, Nascimento RM, Coelho GL, Nicolau JC, et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet. 2011;12:13. doi:10.1186/1471-2350-12-13.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Jules Heuberger was supported by a fellowship of the Saal van Zwanenberg Stichting in the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Derendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sy, S.K.B., Heuberger, J., Shilbayeh, S. et al. A Markov Chain Model to Evaluate the Effect of CYP3A5 and ABCB1 Polymorphisms on Adverse Events Associated with Tacrolimus in Pediatric Renal Transplantation. AAPS J 15, 1189–1199 (2013). https://doi.org/10.1208/s12248-013-9528-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9528-9

KEY WORDS

Navigation