Skip to main content

Advertisement

Log in

Dopamine D2 Occupancy as a Biomarker for Antipsychotics: Quantifying the Relationship with Efficacy and Extrapyramidal Symptoms

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

For currently available antipsychotic drugs, blockade of dopamine D2 receptors is a critical component for achieving antipsychotic efficacy, but it is also a driving factor in the development of extrapyramidal symptoms (EPS). To inform the clinical development of asenapine, generic mathematical models have been developed for predicting antipsychotic efficacy and EPS tolerability based on D2 receptor occupancy. Clinical data on pharmacokinetics, D2 receptor occupancy, efficacy, and EPS for several antipsychotics were collected from the public domain. Asenapine data were obtained from in-house trials. D2 receptor occupancy data were restricted to published positron emission tomography studies that included blood sampling for pharmacokinetics. Clinical efficacy data were restricted to group mean endpoint data from short-term placebo-controlled trials, whereas EPS evaluation also included some non-placebo-controlled trials. A generally applicable model connecting antipsychotic dose, pharmacokinetics, D2 receptor occupancy, Positive and Negative Syndrome Scale (PANSS) response, and effect on Simpson–Angus Scale (SAS) was then developed. The empirical models describing the D2–PANSS and D2–SAS relationships were used successfully to aid dose selection for asenapine phase II and III trials. A broader use can be envisaged as a dose selection tool for new antipsychotics with D2 antagonist properties in the treatment of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lieberman JA. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia: efficacy, safety and cost outcomes of CATIE and other trials. J Clin Psychiatry. 2007;68:e04.

    Article  PubMed  Google Scholar 

  2. Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry. 1999;156:286–93.

    CAS  PubMed  Google Scholar 

  3. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–44.

    CAS  PubMed  Google Scholar 

  4. Pani L, Pira L, Marchese G. Antipsychotic efficacy: relationship to optimal D(2)-receptor occupancy. Eur Psychiatry. 2007;22:267–75.

    Article  PubMed  Google Scholar 

  5. Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S, et al. High levels of dopamine D2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry. 1996;153:948–50.

    CAS  PubMed  Google Scholar 

  6. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry. 1993;33:227–35.

    Article  CAS  PubMed  Google Scholar 

  7. Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs. 2006;20:389–409.

    Article  CAS  PubMed  Google Scholar 

  8. Saphris® (asenapine sublingual tablets). Full prescribing information, Schering Corporation, a subsidiary of Merck & Co., Inc, Whitehouse Station, NJ; 2010.

  9. European Medicines Agency. Sycrest asenapine. 2010. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/001177/human_med_001379.jsp&murl=menus/medicines/medicines.jsp&mid=WC0b01ac058001d124&jsenabled=true. Accessed 28 September 2010.

  10. Shahid M, Walker GB, Zorn SH, Wong EH. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009;23:65–73.

    Article  CAS  PubMed  Google Scholar 

  11. Andree B, Halldin C, Vrijmoed-de Vries M, Farde L. Central 5-HT2A and D2 dopamine receptor occupancy after sublingual administration of ORG 5222 in healthy men. Psychopharmacology Berl. 1997;131:339–45.

    Article  CAS  PubMed  Google Scholar 

  12. Data on file. Summit, NJ: Merck; 2010.

  13. Geodon® (ziprasidone). Full prescribing information, Pfizer Inc., New York, NY; 2009.

  14. Cheng YF, Paalzow LK, Bondesson U, Ekblom B, Eriksson K, Eriksson SO, et al. Pharmacokinetics of haloperidol in psychotic patients. Psychopharmacology Berl. 1987;91:410–4.

    Article  CAS  PubMed  Google Scholar 

  15. Heyden S. Risperidone expert report (Serial No. R64 766). April 1992.

  16. Kay SR, Fiszbein A, Opler LA. The Positive and Negative Syndrome Scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–76.

    CAS  PubMed  Google Scholar 

  17. Simpson GM, Angus JW. A rating scale for extrapyramidal side effects. Acta Psychiatr Scand Suppl. 1970;212:11–9.

    Article  CAS  PubMed  Google Scholar 

  18. Risperdal® (risperidone). Full prescribing information. Janssen, Division of Ortho-McNeil-Janssen Pharmaceuticals, Inc., Titusville, NJ; 2009.

  19. Zyprexa. Eli Lilly and Company, Indianapolis, IN; 2010.

  20. Friberg LE, de Greef R, Kerbusch T, Karlsson MO. Modeling and simulation of the time course of asenapine exposure response and dropout patterns in acute schizophrenia. Clin Pharmacol Ther. 2009;86:84–91.

    Article  CAS  PubMed  Google Scholar 

  21. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157:514–20.

    Article  CAS  PubMed  Google Scholar 

  22. Kane JM, Cohen M, Zhao J, Alphs L, Panagides J. Efficacy and safety of asenapine in a placebo- and haloperidol-controlled trial in patients with acute exacerbation of schizophrenia. J Clin Psychopharmacol. 2010;30:106–15.

    Article  CAS  PubMed  Google Scholar 

  23. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:1159–72.

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z. Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol. 2005;15:143–51.

    Article  CAS  PubMed  Google Scholar 

  25. Lieberman JA, Mailman RB, Duncan G, Sikich L, Chakos M, Nichols DE, et al. Serotonergic basis of antipsychotic drug effects in schizophrenia. Biol Psychiatry. 1998;44:1099–117.

    Article  CAS  PubMed  Google Scholar 

  26. Lane HY, Lee CC, Liu YC, Chang WH. Pharmacogenetic studies of response to risperidone and other newer atypical antipsychotics. Pharmacogenomics. 2005;6:139–49.

    Article  CAS  PubMed  Google Scholar 

  27. Farde L, Nyberg S, Oxenstierna G, Nakashima Y, Halldin C, Ericsson B. Positron emission tomography studies on D2 and 5-HT2 receptor binding in risperidone-treated schizophrenic patients. J Clin Psychopharmacol. 1995;15:19S–23S.

    CAS  PubMed  Google Scholar 

  28. Gefvert O, Bergstrom M, Langstrom B, Lundberg T, Lindstrom L, Yates R. Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology Berl. 1998;135:119–26.

    Article  CAS  PubMed  Google Scholar 

  29. Gefvert O, Lundberg T, Wieselgren IM, Bergstrom M, Langstrom B, Wiesel F, et al. D(2) and 5HT(2A) receptor occupancy of different doses of quetiapine in schizophrenia: a PET study. Eur Neuropsychopharmacol. 2001;11:105–10.

    Article  CAS  PubMed  Google Scholar 

  30. Seeman P, Tallerico T. Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatry. 1998;3:123–34.

    Article  CAS  PubMed  Google Scholar 

  31. Kapur S, Seeman P. Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action. J Psychiatry Neurosci. 2000;25:161–6.

    CAS  PubMed  Google Scholar 

  32. Potkin SG, Cohen M, Panagides J. Efficacy and tolerability of asenapine in acute schizophrenia: a placebo- and risperidone-controlled trial. J Clin Psychiatry. 2007;68:1492–500.

    Article  CAS  PubMed  Google Scholar 

  33. Nordstrom AL, Farde L, Halldin C. Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology Berl. 1992;106:433–8.

    Article  CAS  PubMed  Google Scholar 

  34. Nyberg S, Farde L, Halldin C. A PET study of 5-HT2 and D2 dopamine receptor occupancy induced by olanzapine in healthy subjects. Neuropsychopharmacology. 1997;16:1–7.

    Article  CAS  PubMed  Google Scholar 

  35. Remington G, Kapur S, Zipursky R. The relationship between risperidone plasma levels and dopamine D2 occupancy: a positron emission tomographic study. J Clin Psychopharmacol. 1998;18:82–3.

    Article  CAS  PubMed  Google Scholar 

  36. Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology Berl. 1993;110:265–72.

    Article  CAS  PubMed  Google Scholar 

  37. Nyberg S, Eriksson B, Oxenstierna G, Halldin C, Farde L. Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry. 1999;156:869–75.

    CAS  PubMed  Google Scholar 

  38. Bench CJ, Lammertsma AA, Dolan RJ, Grasby PM, Warrington SJ, Gunn K, et al. Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88, 059–01: a study using positron emission tomography and 11C-raclopride. Psychopharmacology Berl. 1993;112:308–14.

    Article  CAS  PubMed  Google Scholar 

  39. Bench CJ, Lammertsma AA, Grasby PM, Dolan RJ, Warrington SJ, Boyce M, et al. The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88, 059–01) determined by positron emission tomography. Psychopharmacology Berl. 1996;124:141–7.

    Article  CAS  PubMed  Google Scholar 

  40. Beasley Jr CM, Tollefson G, Tran P, Satterlee W, Sanger T, Hamilton S. Olanzapine versus placebo and haloperidol: acute phase results of the North American double-blind olanzapine trial. Neuropsychopharmacology. 1996;14:111–23.

    Article  CAS  PubMed  Google Scholar 

  41. Beasley Jr CM, Sanger T, Satterlee W, Tollefson G, Tran P, Hamilton S. Olanzapine versus placebo: results of a double-blind, fixed-dose olanzapine trial. Psychopharmacology Berl. 1996;124:159–67.

    Article  CAS  PubMed  Google Scholar 

  42. Beasley Jr CM, Hamilton SH, Crawford AM, Dellva MA, Tollefson GD, Tran PV, et al. Olanzapine versus haloperidol: acute phase results of the international double-blind olanzapine trial. Eur Neuropsychopharmacol. 1997;7:125–37.

    Article  CAS  PubMed  Google Scholar 

  43. Marder SR, Meibach RC. Risperidone in the treatment of schizophrenia. Am J Psychiatry. 1994;151:825–35.

    CAS  PubMed  Google Scholar 

  44. Borison R, et al. Risperidone versus haloperidol versus placebo in the treatment of schizophrenia. Clinical Research Report No. RIS-USA-9001, N83170. Piscataway, NJ: Janssen; 1991.

  45. Peuskens J. Risperidone in the treatment of patients with chronic schizophrenia: a multi-national, multi-centre, double-blind, parallel-group study versus haloperidol. Risperidone Study Group. Br J Psychiatry. 1995;166:712–26.

    Article  CAS  PubMed  Google Scholar 

  46. Clinical Report: RIS-USA-72. 1997. NDA 20588/S002.

  47. Daniel DG, Zimbroff DL, Potkin SG, Reeves KR, Harrigan EP, Lakshminarayanan M. Ziprasidone 80 mg/day and 160 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 6-week placebo-controlled trial. Ziprasidone Study Group. Neuropsychopharmacology. 1999;20:491–505.

    Article  CAS  PubMed  Google Scholar 

  48. Keck Jr P, Buffenstein A, Ferguson J, Feighner J, Jaffe W, Harrigan EP, et al. Ziprasidone 40 and 120 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 4-week placebo-controlled trial. Psychopharmacology Berl. 1998;140:173–84.

    Article  CAS  PubMed  Google Scholar 

  49. Goff DC, Posever T, Herz L, Simmons J, Kletti N, Lapierre K, et al. An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalized patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol. 1998;18:296–304.

    Article  CAS  PubMed  Google Scholar 

  50. Clinical Report: Study 104. 1998. NDA 20825.

  51. Clinical Report: Study 115. 1998. NDA 20825.

  52. Arvanitis LA, Miller BG. Multiple fixed doses of “Seroquel” (quetiapine) in patients with acute exacerbation of schizophrenia: a comparison with haloperidol and placebo. The Seroquel Trial 13 Study Group. Biol Psychiatry. 1997;42:233–46.

    Article  CAS  PubMed  Google Scholar 

  53. Zimbroff DL, Kane JM, Tamminga CA, Daniel DG, Mack RJ, Wozniak PJ, et al. Controlled, dose–response study of sertindole and haloperidol in the treatment of schizophrenia. Sertindole Study Group. Am J Psychiatry. 1997;154:782–91.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Shitij Kapur for his insights and direction during the early development of the models. All authors contributed to the development and writing of the paper and are completely responsible for its scientific content. This study was funded by Merck (Whitehouse Station, NJ, USA). Editorial support was provided by Complete Healthcare Communications, Inc., and funded by Merck (Whitehouse Station, NJ, USA).

Conflicts of interest

Rik de Greef and Joep Schoemaker are employees of Merck Sharp & Dohme (Oss, the Netherlands). John Panagides was an employee of Schering-Plough (formerly Organon), now Merck, at the time the study was conducted. Drs. Maloney and Olsson-Gisleskog were employed by Pharsight, A Certara Company, at the time this research was conducted and have no other interests to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rik de Greef.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOC 143 872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Greef, R., Maloney, A., Olsson-Gisleskog, P. et al. Dopamine D2 Occupancy as a Biomarker for Antipsychotics: Quantifying the Relationship with Efficacy and Extrapyramidal Symptoms. AAPS J 13, 121–130 (2011). https://doi.org/10.1208/s12248-010-9247-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9247-4

KEY WORDS

Navigation