Skip to main content

Advertisement

Log in

In Vitro Cutaneous Application of ISCOMs on Human Skin Enhances Delivery of Hydrophobic Model Compounds Through the Stratum Corneum

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effect of a novel kind of immune-stimulating complexes (ISCOMs) on human skin penetration of model compounds in vitro to evaluate their potential as a delivery system, ultimately for transcutaneous vaccination. Special focus was on elucidating the mechanisms of penetration. Preparation of ISCOMs was done by dialysis and subsequent purification in a sucrose density gradient. The penetration pathways of acridine-labeled ISCOMs were visualized using confocal laser scanning microscopy (CLSM). Transmission electron microscopy (TEM) was used to evaluate the ultrastructural changes in the skin after application of the ISCOMs with or without hydration. Transcutaneous permeation of the model compound, methyl nicotinate, was evaluated in diffusion cells. The prepared ISCOMs were 42–52 nm in diameter as evaluated by dynamic light scattering with zeta potentials of −33 to −26.1 mV. TEM investigations verified the presence of ISCOM structures. Penetration of acridine into skin was greatly increased by incorporation into ISCOMs as visualized by CLSM. Permeation of methyl nicotinate was enhanced in the presence of ISCOMs. Ultrastructural changes of the intercellular space in the stratum corneum after exposure of ISCOMs were observed on micrographs, especially for hydrated skin. In conclusion, cutaneous application of ISCOMs leads to increased penetration of hydrophobic model compounds through human stratum corneum and thus shows potential as a transcutaneous delivery system. The increased penetration seems to be reflected by a change in the intercellular space between the corneocytes, and the effect is most likely caused by the components of the ISCOMs rather than intact ISCOMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APC:

Antigen-presenting cells

CLSM:

Confocal laser scanning microscopy

DLS:

Dynamic light scattering

ISCOMs:

Immune-stimulating complexes

LDE:

Laser Doppler electrophoresis

TEM:

Transmission electron microscopy

UC:

Ultracentrifugation

References

  1. Barr IG, Mitchell GF. ISCOMs (immunostimulating complexes): the first decade. Immunol Cell Biol. 1996;74:8–25.

    Article  CAS  PubMed  Google Scholar 

  2. Sanders MT, Brown LE, Deliyannis G, Pearse MJ. ISCOM-based vaccines: the second decade. Immunol Cell Biol. 2005;83:119–28.

    Article  CAS  PubMed  Google Scholar 

  3. Lendemans DG, Myschik J, Hook S, Rades T. Cationic cage-like complexes formed by DC-cholesterol, Quil-A, and phospholipid. J Pharm Sci. 2005;94:1794–807.

    Article  CAS  PubMed  Google Scholar 

  4. McBurney WT, Lendemans DG, Myschik J, Hennessy T, Rades T, Hook S. In vivo activity of cationic immune stimulating complexes (PLUSCOMs). Vaccine. 2008;26:4549–56.

    Article  CAS  PubMed  Google Scholar 

  5. Huang CM. Topical vaccination: the skin as a unique portal to adaptive immune responses. Semin Immunopathol. 2007;29:71–80.

    Article  CAS  PubMed  Google Scholar 

  6. Zaba LC, Krueger JG, Lowes MA. Resident and “inflammatory” dendritic cells in human skin. J Invest Dermatol. 2009;129:302–8.

    Article  CAS  PubMed  Google Scholar 

  7. Kirkby N, Samuelsen P (inventors). Composition for vaccination. PCT No. PCT/DK03/00654; 2006 Jul 6.

  8. Madsen HB, Rozlosnik N, Manniche S, Madsen F, Nielsen HM, Ifversen P. http://www.aapsj.org/abstracts/AM_2007/AAPS2007-001115.PDF. Accessed 22 April 2007.

  9. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci. 2006;91:159–65.

    Article  CAS  PubMed  Google Scholar 

  10. varez-Roman R, Naik A, Kalia YN, Fessi H, Guy RH. Visualization of skin penetration using confocal laser scanning microscopy. Eur J Pharm Biopharm. 2004;58:301–16.

    Article  Google Scholar 

  11. van den Bergh BA, Vroom J, Gerritsen H, Junginger HE, Bouwstra JA. Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochim Biophys Acta. 1999;1461:155–73.

    Article  PubMed  Google Scholar 

  12. Cevc G, Schatzlein A, Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta. 2002;1564:21–30.

    Article  CAS  PubMed  Google Scholar 

  13. van den Bergh BA, Bouwstra JA, Junginger HE, Wertz PW. Elasticity of vesicles affects hairless mouse skin structure and permeability. J Control Release. 1999;62:367–79.

    Article  PubMed  Google Scholar 

  14. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA. Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol. 2007;127:1701–12.

    CAS  PubMed  Google Scholar 

  15. Fatouros DG, Groenink HW, de Graaff AM, van Aelst AC, Koerten HK, Bouwstra JA. Visualization studies of human skin in vitro/in vivo under the influence of an electrical field. Eur J Pharm Sci. 2006;29:160–70.

    Article  CAS  PubMed  Google Scholar 

  16. Bhatia KS, Singh J. Effect of linolenic acid/ethanol or limonene/ethanol and iontophoresis on the in vitro percutaneous absorption of LHRH and ultrastructure of human epidermis. Int J Pharm. 1999;180:235–50.

    Article  CAS  PubMed  Google Scholar 

  17. Hoglund S, Dalsgaard K, Lovgren K, Sundquist B, Osterhaus A, Morein B. ISCOMs and immunostimulation with viral antigens. Subcell Biochem. 1989;15:39–68.

    CAS  PubMed  Google Scholar 

  18. Baxter-Gabbard KL. A simple method for the large-scale preparation of sucrose gradients. FEBS Lett. 1972;20:117–9.

    Article  CAS  PubMed  Google Scholar 

  19. Myschik J, Lendemans DG, McBurney WT, Demana PH, Hook S, Rades T. On the preparation, microscopic investigation and application of ISCOMs. Micron. 2006;37:724–34.

    Article  CAS  PubMed  Google Scholar 

  20. Demana PH, Davies NM, Berger B, Vosgerau U, Rades T. A comparison of pseudo-ternary diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by lipid-film hydration and dialysis. J Pharm Pharmacol. 2004;56:573–80.

    Article  CAS  PubMed  Google Scholar 

  21. Bouwstra JA, Honeywell-Nguyen PL. Skin structure and mode of action of vesicles. Adv Drug Deliv Rev. 2002;54:S41–55.

    Article  CAS  PubMed  Google Scholar 

  22. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9:663–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dubey V, Mishra D, Nahar M, Jain NK. Elastic liposomes mediated transdermal delivery of an anti-jet lag agent: preparation, characterization and in vitro human skin transport study. Curr Drug Deliv. 2008;5:199–206.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang LW, Yu WW, Colvin VL, Monteiro-Riviere NA. Biological interactions of quantum dot nanoparticles in skin and in human epidermal keratinocytes. Toxicol Appl Pharmacol. 2008;228:200–11.

    Article  CAS  PubMed  Google Scholar 

  25. Muhammad F, Monteiro-Riviere NA, Riviere JE. Comparative in vivo toxicity of topical JP-8 jet fuel and its individual hydrocarbon components: identification of tridecane and tetradecane as key constituents responsible for dermal irritation. Toxicol Pathol. 2005;33:258–66.

    Article  CAS  PubMed  Google Scholar 

  26. Monteiro-Riviere NA, Inman AO, Mak V, Wertz P, Riviere JE. Effect of selective lipid extraction from different body regions on epidermal barrier function. Pharm Res. 2001;18:992–8.

    Article  CAS  PubMed  Google Scholar 

  27. Swartzendruber DC, Wertz PW, Kitko DJ, Madison KC, Downing DT. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J Invest Dermatol. 1989;92:251–7.

    Article  CAS  PubMed  Google Scholar 

  28. van den Bergh BA, Swartzendruber DC, Bos-Van der GA, Hoogstraate JJ, Schrijvers AH, Bodde HE, et al. Development of an optimal protocol for the ultrastructural examination of skin by transmission electron microscopy. J Microsc. 1997;187:125–33.

    Article  PubMed  Google Scholar 

  29. Swartzendruber DC, Burnett IH, Wertz PW, Madison KC, Squier CA. Osmium tetroxide and ruthenium tetroxide are complementary reagents for the preparation of epidermal samples for transmission electron microscopy. J Invest Dermatol. 1995;104:417–20.

    Article  CAS  PubMed  Google Scholar 

  30. Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers—dermal and transdermal drug-delivery. J Control Release. 1994;30:1–15.

    Article  CAS  Google Scholar 

  31. Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today. 2005;2:67–74.

    Article  CAS  Google Scholar 

  32. Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104:226–32.

    Article  CAS  PubMed  Google Scholar 

  33. Recchia J, Lurantos MH, Amsden JA, Storey J, Kensil CR. A semisynthetic Quillaja saponin as a drug delivery agent for aminoglycoside antibiotics. Pharm Res. 1995;12:1917–23.

    Article  CAS  PubMed  Google Scholar 

  34. Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2004;56:603–18.

    Article  CAS  PubMed  Google Scholar 

  35. Aungst BJ, Rogers NJ, Shefter E. Enhancement of naloxone penetration through human-skin in vitro using fatty-acids, fatty alcohols, surfactants, sulfoxides and amides. Int J Pharm. 1986;33:225–34.

    Article  CAS  Google Scholar 

  36. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;11:1261–8.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Danish National Advanced Technology Foundation and the Drug Research Academy. Karina Juul Vissing is acknowledged for technical assistance and Niels Coley for linguistic revision of the manuscript. Nordic vaccine A/S is greatly acknowledged for their kind sharing of know-how on the preparation and characterization of the Posintro™ nanoparticles and for their helpful discussions. Furthermore, Nancy Monteiro-Riviere and Al Inman are acknowledged for their kind help on TEM studies with ruthenium tetroxide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanne Mørck Nielsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madsen, H.B., Ifversen, P., Madsen, F. et al. In Vitro Cutaneous Application of ISCOMs on Human Skin Enhances Delivery of Hydrophobic Model Compounds Through the Stratum Corneum. AAPS J 11, 728–739 (2009). https://doi.org/10.1208/s12248-009-9149-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9149-5

Key words

Navigation