Skip to main content

Transcutaneous Immunization Using Nano-sized Drug Carriers

  • Protocol
Nanomaterials in Pharmacology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Growing knowledge about the immune system in the skin and recent advances in the preparation of nano-sized particles have encouraged research into the induction of an adaptive immune response via the transcutaneous route. Because the skin is abundant in dendritic cell subsets, vaccine administration through the transcutaneous route has promise for simple and efficient immunization and immunotherapy methods, which would provide a welcome alternative to the conventional injection technique. Strategies using a nanoparticle-based protein delivery into the skin depend on the types of nanoparticles, such as soft vesicular nanoparticles, hard inorganic and polymer nanoparticles, and surfactant-coated solid-in-oil nanoparticles. Here, we discuss the skin structure and the immune system in the skin, as well as the types of nanoparticles, routes of administration, and effects of adjuvants. In addition, a detailed description of the preparation and characteristics of solid-in-oil nanoparticles is provided for the future development of an efficient transcutaneous immunization system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sandby-Møller J, Poulsen T, Wulf HC (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 83:410–413

    PubMed  Google Scholar 

  2. Yudovsky D, Pilon L (2010) Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance. Appl Opt 49:1707–1719

    CAS  PubMed  Google Scholar 

  3. Watt FM (1989) Terminal differentiation of epidermal keratinocytes. Curr Opin Cell Biol 1:1107–1115

    CAS  PubMed  Google Scholar 

  4. Madison KC (2003) Barrier function of the skin: “la raison d’être” of the epidermis. J Invest Dermatol 121:231–241

    CAS  PubMed  Google Scholar 

  5. Bouwstra JA, Honeywell-Nguyen PL, Gooris GS et al (2003) Structure of the skin barrier and its modulation by vesicular formulations. Prog Lipid Res 42:1–36

    CAS  PubMed  Google Scholar 

  6. Ho NFH, Barsuhn CL, Burton PS et al (1992) (D) Routes of delivery: case studies: (3) mechanistic insights to buccal delivery of proteinaceous substances. Adv Drug Deliv Rev 8:97–236

    Google Scholar 

  7. Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104:226–232

    CAS  PubMed  Google Scholar 

  8. Caspers PJ, Lucassen GW, Carter EA et al (2001) In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol 116:434–442

    CAS  PubMed  Google Scholar 

  9. Denker BM, Nigam SK (1998) Molecular structure and assembly of the tight junction. Am J Physiol 274:F1–F9

    CAS  PubMed  Google Scholar 

  10. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101–114

    CAS  PubMed  Google Scholar 

  12. Thomas BJ, Finnin BC (2004) The transdermal revolution. Drug Discov Today 9:697–703

    CAS  PubMed  Google Scholar 

  13. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Mitragotri S (2003) Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J Control Release 86:69–92

    CAS  PubMed  Google Scholar 

  15. Bos JD, Meinardi MM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165

    CAS  PubMed  Google Scholar 

  16. Lane ME (2013) Skin penetration enhancers. Int J Pharm 447:12–21

    CAS  PubMed  Google Scholar 

  17. Kurihara-Bergstrom T, Knutson K, DeNoble LJ et al (1990) Percutaneous absorption enhancement of an ionic molecule by ethanol-water systems in human skin. Pharm Res 7:762–766

    CAS  PubMed  Google Scholar 

  18. Liu P, Cettina M, Wong J (2009) Effects of isopropanol-isopropyl myristate binary enhancers on in vitro transport of estradiol in human epidermis: a mechanistic evaluation. J Pharm Sci 98:565–572

    CAS  PubMed  Google Scholar 

  19. Bommanam D, Potts RO, Guy RH (1991) Examination of the effect of ethanol on human stratum corneum in vivo using infrared spectroscopy. J control Release 16:299–304

    Google Scholar 

  20. Goates CY, Knutson K (1994) Enhanced permeation of polar compounds through human epidermis. I. Permeability and membrane structural changes in the presence of short chain alcohols. Biochim Biophys Acta 1195:169–179

    CAS  PubMed  Google Scholar 

  21. Dias M, Naik A, Guy RH et al (2008) In vivo infrared spectroscopy studies of alkanol effects on human skin. Eur J Pharm Biopharm 69:1171–1175

    CAS  PubMed  Google Scholar 

  22. Andega S, Kanikkannan N, Singh M (2001) Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. J Control Release 77:17–25

    CAS  PubMed  Google Scholar 

  23. Mak VH, Potts RO, Guy RH (1990) Percutaneous penetration enhancement in vivo measured by attenuated total reflectance infrared spectroscopy. Pharm Res 7:835–841

    CAS  PubMed  Google Scholar 

  24. Naik A, Pechtold LARM, Potts RO et al (1995) J Controll Release 37:299–306

    CAS  Google Scholar 

  25. Ongpipattanakul B, Burnette RR, Potts RO et al (1991) Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharm Res 8:350–354

    CAS  PubMed  Google Scholar 

  26. Desai P, Patlolla RR, Singh M (2010) Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol 27:247–259

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Chen B, Liu DL, Pan WY et al (2014) Use of lipolanthionine peptide, a toll-like receptor 2 inhibitor, enhances transdermal delivery efficiency. Mol Med Rep 10:593–598

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Glenn GM, Rao M, Matyas GR et al (1998) Skin immunization made possible by cholera toxin. Nature 391:851

    CAS  PubMed  Google Scholar 

  29. Weiss R, Scheiblhofer S, Machado Y et al (2013) New approaches to transcutaneous immunotherapy: targeting dendritic cells with novel allergen conjugates. Curr Opin Allergy Clin Immunol 13:669–676

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Bal SM, Ding Z, van Riet E et al (2010) Advances in transcutaneous vaccine delivery: do all ways lead to Rome? J Control Release 148:266–282

    CAS  PubMed  Google Scholar 

  31. Kissenpfennig A, Henri S, Dubois B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    CAS  PubMed  Google Scholar 

  32. Silberberg I, Baer RL, Rosenthal SA (1976) The role of Langerhans cells in allergic contact hypersensitivity. A review of findings in man and guinea pigs. J Invest Dermatol 66:210–217

    CAS  PubMed  Google Scholar 

  33. Yu RC, Abrams DC, Alaibac M et al (1994) Morphological and quantitative analyses of normal epidermal Langerhans cells using confocal scanning laser microscopy. Br J Dermatol 131:843–848

    CAS  PubMed  Google Scholar 

  34. Sen D, Forrest L, Kepler TB et al (2010) Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1- and Th2-polarizing adjuvants. Proc Natl Acad Sci 107:8334–8339

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Kissenpfennig A, Malissen B (2006) Langerhans cells – revisiting the paradigm using genetically engineered mice. Trends Immunol 27:132–139

    CAS  PubMed  Google Scholar 

  36. Murakami R, Denda-Nagai K, Hashimoto S et al (2013) A unique dermal dendritic cell subset that skews the immune response toward Th2. PLoS One 8:e73270

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Hansen S, Lehr CM (2012) Nanoparticles for transcutaneous vaccination. Microb Biotechnol 5:156–167

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Xiang SD, Scholzen A, Minigo G et al (2006) Pathogen recognition and development of particulate vaccines: does size matter? Methods 40:1–9

    CAS  PubMed  Google Scholar 

  39. Fifis T, Gamvrellis A, Crimeen-Irwin B et al (2004) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154

    CAS  PubMed  Google Scholar 

  40. Mottram PL, Leong D, Crimeen-Irwin B et al (2007) Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4:73–84

    CAS  PubMed  Google Scholar 

  41. Kanchan V, Panda AK (2007) Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28:5344–5357

    CAS  PubMed  Google Scholar 

  42. Manolova V, Flace A, Bauer M et al (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    CAS  PubMed  Google Scholar 

  43. Wibowo N, Chuan YP, Seth A et al (2014) Co-administration of non-carrier nanoparticles boosts antigen immune response without requiring protein conjugation. Vaccine 32:3664–3669

    CAS  PubMed  Google Scholar 

  44. Mitragotri S (2005) Immunization without needles. Nat Rev 5:905–916

    CAS  Google Scholar 

  45. Matsuo K, Hirobe S, Okada N et al (2013) Frontiers of transcutaneous vaccination systems: novel technologies and devices for vaccine delivery. Vaccine 31:2403–2415

    CAS  PubMed  Google Scholar 

  46. Baroli B, Ennas MG, Loffredo F et al (2007) Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 127:1701–1712

    CAS  PubMed  Google Scholar 

  47. Prow TW, Grice JE, Lin LL et al (2011) Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev 63:470–491

    CAS  PubMed  Google Scholar 

  48. Labouta HI, Schneider M (2013) Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. Nanomedicine 9:39–54

    CAS  PubMed  Google Scholar 

  49. Papakostas D, Rancan F, Sterry W et al (2011) Nanoparticles in dermatology. Arch Dermatol Res 303:533–550

    CAS  PubMed  Google Scholar 

  50. de Leeuw J, de Vijlder HC, Bjerring P et al (2009) Liposomes in dermatology today. J Eur Acad Dermatol Venereol 23:505–516

    PubMed  Google Scholar 

  51. Duangjit S, Pamornpathomkul B, Opanasopit P et al (2014) Role of the charge, carbon chain length, and content of surfactant on the skin penetration of meloxicam-loaded liposomes. Int J Nanomedicine 29:2005–2017

    Google Scholar 

  52. Rattanapak T, Young K, Rades T et al (2012) Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol 64:1560–1569

    CAS  PubMed  Google Scholar 

  53. Ghanbarzadeh S, Arami S (2013) Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. Biomed Res Int 2013:616810

    PubMed Central  PubMed  Google Scholar 

  54. Li N, Peng LH, Chen X et al (2011) Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo. Int J Nanomedicine 6:3241–3250

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Romero EL, Morilla MJ (2013) Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations. Int J Nanomedicine 8:3171–3186

    PubMed Central  PubMed  Google Scholar 

  56. Cevc G, Gebauer D, Stieber J et al (1998) Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta 1368:201–215

    CAS  PubMed  Google Scholar 

  57. Cevc G, Richardsen H (1999) Lipid vesicles and membrane fusion. Adv Drug Deliv Rev 38:207–232

    CAS  PubMed  Google Scholar 

  58. Gupta PN, Mishra V, Rawat A et al (2005) Non-invasive vaccine delivery in transfersomes, niosomes and liposomes: a comparative study. Int J Pharm 293:73–82

    CAS  PubMed  Google Scholar 

  59. Mahor S, Rawat A, Dubey PK et al (2007) Cationic transfersomes based topical genetic vaccine against hepatitis B. Int J Pharm 340:13–19

    CAS  PubMed  Google Scholar 

  60. Cevc G, Vierl U (2010) Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release 141:277–299

    CAS  PubMed  Google Scholar 

  61. Kumar A, Pathak K, Bali V (2012) Ultra-adaptable nanovesicular systems: a carrier for systemic delivery of therapeutic agents. Drug Discov Today 17:1233–1241

    CAS  PubMed  Google Scholar 

  62. Mishra D, Dubey V, Asthana A et al (2006) Elastic liposomes mediated transcutaneous immunization against Hepatitis B. Vaccine 24:4847–4855

    CAS  PubMed  Google Scholar 

  63. Mishra D, Mishra PK, Dubey V et al (2008) Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur J Pharm Sci 33:424–433

    CAS  PubMed  Google Scholar 

  64. Wang J, Hu JH, Li FQ et al (2007) Strong cellular and humoral immune responses induced by transcutaneous immunization with HBsAg DNA-cationic deformable liposome complex. Exp Dermatol 16:724–729

    CAS  PubMed  Google Scholar 

  65. Cheng JY, Huang HN, Tseng WC et al (2009) Transcutaneous immunization by lipoplex-patch based DNA vaccines is effective vaccination against Japanese encephalitis virus infection. J Control Release 135:242–249

    CAS  PubMed  Google Scholar 

  66. Mishra V, Mahor S, Rawat A et al (2006) Development of novel fusogenic vesosomes for transcutaneous immunization. Vaccine 24:5559–5570

    CAS  PubMed  Google Scholar 

  67. Bracke S, Carretero M, Guerrero-Aspizua S et al (2014) Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: development of siRNA SECosome-based novel therapies. Exp Dermatol 23:199–201

    CAS  PubMed  Google Scholar 

  68. Moghassemi S, Hadjizadeh A (2014) Nano-niosomes as nanoscale drug delivery systems: an illustrated review. J Control Release 185C:22–36

    Google Scholar 

  69. El-Laithy HM, Shoukry O, Mahran LG (2011) Novel sugar esters proniosomes for transdermal delivery of vinpocetine: preclinical and clinical studies. Eur J Pharm Biopharm 77:43–55

    CAS  PubMed  Google Scholar 

  70. Junyaprasert VB, Singhsa P, Suksiriworapong J et al (2012) Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid. Int J Pharm 423:303–311

    CAS  PubMed  Google Scholar 

  71. El-Ridy MS, Badawi AA, Safar MM et al (2012) Niosomes as a novel pharmaceutical formulation encapsulating the hepatoprotective drug silymarin. Int J Pharm Pharm Sci 4:549–559

    CAS  Google Scholar 

  72. Jain S, Vyas SP (2005) Mannosylated niosomes as carrier adjuvant system for topical immunization. J Pharm Pharmacol 57:1177–1184

    CAS  PubMed  Google Scholar 

  73. Vyas SP, Singh RP, Jain S et al (2005) Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int J Pharm 296:80–86

    CAS  PubMed  Google Scholar 

  74. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    CAS  PubMed  Google Scholar 

  75. Combadière B, Mahé B (2008) Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 31:293–315

    PubMed  Google Scholar 

  76. Kumar A, Wonganan P, Sandoval MA et al (2012) Microneedle-mediated transcutaneous immunization with plasmid DNA coated on cationic PLGA nanoparticles. J Control Release 163:230–239

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Sahdev P, Ochyl LJ, Moon JJ (2014) Biomaterials for nanoparticle vaccine delivery systems. Pharm Res. doi:10.1007/s110950141419-y

    PubMed Central  PubMed  Google Scholar 

  78. Mattheolabakis G, Lagoumintzis G, Panagi Z et al (2010) Transcutaneous delivery of a nanoencapsulated antigen: induction of immune responses. Int J Pharm 385:187–193

    CAS  PubMed  Google Scholar 

  79. Mittal A, Raber AS, Schaefer UF et al (2013) Non-invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization. Vaccine 31:3442–3451

    CAS  PubMed  Google Scholar 

  80. Zhou X, Liu D, Liu H et al (2010) Effect of low molecular weight chitosans on drug permeation through mouse skin: 1. Transdermal delivery of baicalin. J Pharm Sci 99:2991–2998

    CAS  PubMed  Google Scholar 

  81. Li N, Peng LH, Chen X et al (2011) Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers. Vaccine 29:6179–6190

    CAS  PubMed  Google Scholar 

  82. He W, Guo X, Xiao L et al (2009) Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm 382:234–243

    CAS  PubMed  Google Scholar 

  83. Hasanovic A, Zehl M, Reznicek G et al (2009) Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol 61:1609–1616

    CAS  PubMed  Google Scholar 

  84. Slütter B, Plapied L, Fievez V et al (2009) Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination. J Control Release 138:113–121

    PubMed  Google Scholar 

  85. Li N, Peng LH, Chen X et al (2014) Antigen-loaded nanocarriers enhance the migration of stimulated Langerhans cells to draining lymph nodes and induce effective transcutaneous immunization. Nanomedicine 10:215–223

    CAS  PubMed  Google Scholar 

  86. Prabaharan M (2011) Prospective of guar gum and its derivatives as controlled drug delivery systems. Int J Biol Macromol 49:117–124

    CAS  PubMed  Google Scholar 

  87. Mummert ME (2005) Immunologic roles of hyaluronan. Immunol Res 31:189–206

    CAS  PubMed  Google Scholar 

  88. Singh M, Briones M, O'Hagan DT (2001) A novel bioadhesive intranasal delivery system for inactivated influenza vaccines. J Control Release 70:267–276

    CAS  PubMed  Google Scholar 

  89. Huang Y, Yu F, Park YS et al (2010) Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials 31:9086–9091

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Kürsteiner O, Moser C, Lazar H et al (2006) Inflexal® V – the influenza vaccine with the lowest ovalbumin content. Vaccine 24:6632–6635

    PubMed  Google Scholar 

  91. Vacher G, Kaeser MD, Moser C et al (2013) Recent advances in mucosal immunization using virus-like particles. Mol Pharm 10:1596–1609

    CAS  PubMed  Google Scholar 

  92. Young SL, Wilson M, Wilson S et al (2006) Transcutaneous vaccination with virus-like particles. Vaccine 24:5406–5412

    CAS  PubMed  Google Scholar 

  93. Matsuo K, Ishii Y, Quan YS et al (2011) Compositional optimization and safety assessment of a hydrogel patch as a transcutaneous immunization device. Biol Pharm Bull 34:1835–1840

    CAS  PubMed  Google Scholar 

  94. Matsuo K, Ishii Y, Kawai Y et al (2013) Analysis of transcutaneous antigenic protein delivery by a hydrogel patch formulation. J Pharm Sci 102:1936–1947

    CAS  PubMed  Google Scholar 

  95. Tahara Y, Kamiya N, Goto M (2012) Solid-in-oil dispersion: a novel core technology for drug delivery systems. Int J Pharm 438:249–257

    CAS  PubMed  Google Scholar 

  96. Toorisaka E, Ono H, Arimori K et al (2003) Hypoglycemic effect of surfactant-coated insulin solubilized in a novel solid-in-oil-in-water (S/O/W) emulsion. Int J Pharm 252:271–274

    CAS  PubMed  Google Scholar 

  97. Piao H, Kamiya N, Hirata A et al (2007) A novel solid-in-oil nanosuspension for transdermal delivery of diclofenac sodium. Pharm Res 25:896–901

    PubMed  Google Scholar 

  98. Piao H, Kamiya N, Cui F et al (2011) Preparation of a solid-in-oil nanosuspension containing L-ascorbic acid as a novel long-term stable topical formulation. Int J Pharm 420:156–160

    CAS  PubMed  Google Scholar 

  99. Tahara Y, Honda S, Kamiya N et al (2008) A solid-in-oil nanodispersion for transcutaneous protein delivery. J Control Release 131:14–18

    CAS  PubMed  Google Scholar 

  100. Tahara Y, Namatsu K, Kamiya N et al (2010) Transcutaneous immunization by a solid-in-oil nanodispersion. Chem Commun 46:9200–9202

    CAS  Google Scholar 

  101. Sato K, Sugibayashi K, Morimoto Y (1988) Effect and mode of action of aliphatic esters on the in vitro skin permeation of nicorandil. Int J Pharm 43:31–40

    CAS  Google Scholar 

  102. Santos P, Watkinson AC, Hadgraft J et al (2012) Influence of penetration enhancer on drug permeation from volatile formulations. Int J Pharm 439:260–268

    CAS  PubMed  Google Scholar 

  103. Yoshiura H, Hashida M, Kamiya N et al (2007) Factors affecting protein release behavior from surfactant-protein complexes under physiological conditions. Int J Pharm 338:174–179

    CAS  PubMed  Google Scholar 

  104. Yoshiura H, Tahara Y, Hashida M et al (2008) Design and in vivo evaluation of solid-in-oil suspension for oral delivery of human growth hormone. Biochem Eng J 41:106–110

    CAS  Google Scholar 

  105. Kitaoka M, Imamura K, Hirakawa Y et al (2014) Sucrose laurate-enhanced transcutaneous immunization with a solid-in-oil nanodispersion. Med Chem Commun 5:20–24

    CAS  Google Scholar 

  106. Rothbard JB, Garlington S, Lin Q et al (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257

    CAS  PubMed  Google Scholar 

  107. Nakase I, Takeuchi T, Tanaka G et al (2008) Methodological and cellular aspects that govern the internalization mechanisms of arginine-rich cell-penetrating peptides. Adv Drug Deliv Rev 60:598–607

    CAS  PubMed  Google Scholar 

  108. Lopes LB, Furnish E, Komalavilas P et al (2008) Enhanced skin penetration of P20 phosphopeptide using protein transduction domains. Eur J Pharm Biopharm 68:441–445

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Langbein L, Grund C, Kuhn C et al (2002) Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 81:419–435

    CAS  PubMed  Google Scholar 

  110. Brandner JM, Kief S, Grund C et al (2002) Organization and formation of the tight junction system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81:253–263

    CAS  PubMed  Google Scholar 

  111. Schutze-Redelmeier MP, Kong S, Bally MB et al (2004) Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes. Vaccine 22:1985–1991

    CAS  PubMed  Google Scholar 

  112. Kitaoka M, Imamura K, Hirakawa Y et al (2013) Needle-free immunization using a solid-in-oil nanodispersion enhanced by a skin-permeable oligoarginine peptide. Int J Pharm 458:334–339

    CAS  PubMed  Google Scholar 

  113. Anjuère F, George-Chandy A, Audant F et al (2003) Transcutaneous immunization with cholera toxin B subunit adjuvant suppresses IgE antibody responses via selective induction of Th1 immune responses. J Immunol 170:1586–1592

    PubMed  Google Scholar 

  114. Pitcovski J, Bazak Z, Wasserman E et al (2006) Heat labile enterotoxin of E. coli: a potential adjuvant for transcutaneous cancer immunotherapy. Vaccine 24:636–643

    CAS  PubMed  Google Scholar 

  115. Connell TD (2007) Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines 6:821–834

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Glenn GM, Flyer DC, Ellingsworth LR et al (2007) Transcutaneous immunization with heat-labile enterotoxin: development of a needle-free vaccine patch. Expert Rev Vaccines 6:809–819

    CAS  PubMed  Google Scholar 

  117. Mkrtichyan M, Ghochikyan A, Movsesyan N et al (2008) Immunostimulant adjuvant patch enhances humoral and cellular immune responses to DNA immunization. DNA Cell Biol 27:19–24

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Guebre-Xabier M, Hammond SA, Ellingsworth LR et al (2004) Immunostimulant patch enhances immune responses to influenza virus vaccine in aged mice. J Virol 78:7610–7618

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    CAS  PubMed  Google Scholar 

  120. Aguilar JC, Rodríguez EG (2007) Vaccine adjuvants revisited. Vaccine 25:3752–3762

    CAS  PubMed  Google Scholar 

  121. Hemmi H, Takeuchi O, Kawai T et al (2000) A toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    CAS  PubMed  Google Scholar 

  122. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:249–258

    CAS  PubMed  Google Scholar 

  123. Ilyinskii PO, Roy CJ, O'Neil CP et al (2014) Adjuvant-carrying synthetic vaccine particles augment the immune response to encapsulated antigen and exhibit strong local immune activation without inducing systemic cytokine release. Vaccine 32:2882–2895

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Slütter B, Bal SM, Ding Z et al (2011) Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release 154:123–130

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Goto .

Editor information

Editors and Affiliations

Glossary

Au-NPs

Gold nanoparticles

CPP

Cell-penetrating peptides

dDC

Dermal dendritic cell

FITC

Fluorescein isothiocyanate

HBsAg

Hepatitis B surface antigen

HRP

Horseradish peroxidase

IFN

Interferon

IL

Interleukin

IPM

Isopropyl myristate

LC

Langerhans cell

ODN

Oligodeoxynucleotide

OVA

Ovalbumin

PBS

Phosphate-buffered saline

PLA

Polylactic acid

PLGA

Poly(lactide-co-glycolic acid)

PRR

Pattern recognition receptor

PAMP

Pathogen-associated molecular pattern

SC

Stratum corneum

S/O

Solid-in-oil

Th1-type

T helper type 1

Th2-type

T helper type 2

TLR

Toll-like receptor

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kitaoka, M., Goto, M. (2016). Transcutaneous Immunization Using Nano-sized Drug Carriers. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_18

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics