Skip to main content

Advertisement

Log in

Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Phase transformations in formulations can lead to instability in physicochemical, biopharmaceutical, and processing properties of products. The influences of formulation design on the optimal dosage forms should be specified. The aim here was to investigate whether excipients with different water sorption behavior affect hydrate formation of nitrofurantoin in wet masses. Nitrofurantoin anhydrate was used as a hydrate-forming model drug, and 4 excipients with different water-absorbing potential (amorphous low-substituted hydroxypropylcellulose, modified maize starch, partially amorphous silicified microcrystalline cellulose, and crystalline α-lactose monohydrate) were granulated with varying amounts of purified water. Off-line evaluation of wet masses containing nitrofurantoin anhydrate and excipient (1∶1) was performed using an X-ray powder diffractometer (XRPD) and near-infrared spectroscopy, and drying phase was evaluated by variable temperature XRPD. Only amorphous excipient in the formulation retarded hydrate formation of an active pharmaceutical ingredient (API) at high water contents. Hygroscopic partially crystalline excipient hindered hydrate formation of API at low water contents. Crystalline excipient was unable to control hydrate formation of API. The character of excipient affects the stability of formulation. Thus, correct selection of excipients for the formulation can control processing-induced phase transitions and improve the storage stability of the final dosage form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. York P. Solid-state properties of powders in the formulation and processing of solid dosage forms.Int J Pharm. 1983;14:1–28.

    Article  CAS  Google Scholar 

  2. Morris KR, Griesser UJ, Eckhardt CJ, Stowell JG. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes.Adv Drug Deliv Rev. 2001;48:91–114.

    Article  CAS  Google Scholar 

  3. FDA. PAT: a framework for innovative pharmaceutical development, manufacturing and quality assurance. In:Guidance for Industry: Rockville, MD: U.S. Food and Drug Administration; 2004.

    Google Scholar 

  4. Yu LX, Lionberger RA, Raw AS, D’Costa R, Wu H, Hussain AS. Applications of process analytical technology to crystallization processes.Adv Drug Deliv Rev. 2004;56:349–369.

    Article  CAS  Google Scholar 

  5. Grant DJ, Byrn SR. A timely re-examination of drug polymorphism in pharmaceutical development and regulation.Adv Drug Deliv Rev. 2004;56:237–239.

    Article  CAS  Google Scholar 

  6. Ahlneck C, Zografi G. The molecular basis of moisture effects on the physical and chemical stability of drugs in the solid state.Int J Pharm. 1990;62:87–95.

    Article  CAS  Google Scholar 

  7. Hancock BC, Zografi G. Characteristics and significance of amorphous state in pharmaceutical systems.J Pharm. Sci. 1997;86:1–12.

    Article  CAS  Google Scholar 

  8. Kontny MJ. Distribution of water in solid pharmaceutical systems.Drug Dev Ind Pharm. 1988;14:1991–2027.

    Article  CAS  Google Scholar 

  9. Stubberud L, Arwidsson HG, Graffner C. Water-solid interactions: I. A technique for studying moisture sorptio/desorption.Int J Pharm. 1995;114:55–64.

    Article  CAS  Google Scholar 

  10. Phadnis NV, Suryanarayanan R. Polymorphism in anhydrous theophylline—implications on the dissolution rate of theophylline tablets.J Pharm Sci. 1997;86:1256–1263.

    Article  CAS  Google Scholar 

  11. Newman AW, Byrn SR. Solid-state analysis of the active pharmaceutical ingredient in drug products.Drug Discovery Today. 2003;8:898–905.

    Article  CAS  Google Scholar 

  12. Airaksinen S, Karjalainen M, Räsänen E, Rantanen J, Yliruusi J. Comparison of the effects of two drying methods on polymorphism of theophylline.Int J Pharm. 2004;276:129–141.

    Article  CAS  Google Scholar 

  13. Buckton G, Darcy P. The influence of additives on the recrystallisation of amorphous spray dried lactose.Int J Pharm. 1995;121:81–87.

    Article  CAS  Google Scholar 

  14. Herman J, Visavarungroj N, Remon JP. Instability of drug release from anhydrous theophylline-microcrystalline cellulose formulations.Int J Pharm. 1989;55:143–146.

    Article  CAS  Google Scholar 

  15. Kontny MJ, Zografi G. Sorption of water by solids. In: Brittain HG, ed.Physical Characterization of Pharmaceutical Solids. New York: Marcel Dekker Inc, 1995;387–418.

    Google Scholar 

  16. Zografi G. States of water associated with solids.Drug Dev Ind Pharm. 1988;14:1905–1926.

    CAS  Google Scholar 

  17. Pienaar EW, Caira MR, Lötter AP. Polymorphs of nitrofurantoin. I. Preparation and X-ray crystal structures of two monohydrated forms of nitrofurantoin.J Cryst Spectrosc Res. 1993;23:739–744.

    Article  CAS  Google Scholar 

  18. Pienaar EW, Caira MR, Lötter AP. Polymorphs of nitrofurantoin. 2. Preparation and X-ray crystal structures of two anhydrous forms of nitrofurantoin.J Cryst Spectrosc Res. 1993;23:785–790.

    Article  CAS  Google Scholar 

  19. Caira MR, Pienaar EW, Lötter AP. Polymorphism and pseudopolymorphism of the antibacterial nitrofurantoin.Mol Cryst Li Qcryst. 1996;279:241–264.

    Article  CAS  Google Scholar 

  20. Otsuka M, Matsuda Y. The effect of humidity on hydration kinetics of mixtures of nitrofurantoin anhydride and diluents.Chem Pharm Bull. 1994;42:156–159.

    CAS  Google Scholar 

  21. Kishi A, Otsuka M, Matsuda Y. The effect of humidity on dehydration behavior of nitrofurantoin monohydrate studied by humidity controlled simultaneous instrument for X-ray diffractometry and differential scanning calorimetry (XRD-DSC).Colloid Surf B: Biointerfaces. 2002;25:281–291.

    Article  CAS  Google Scholar 

  22. Khankari RK, Grant DJW. Pharmaceutical hydrates.Thermochimica Acta. 1995;248:61–79.

    Article  CAS  Google Scholar 

  23. Savitzky A, Golay M. Smoothing and differentiation of data by simplified least squares procedures.Anal Chem. 1964;36:1627–1639.

    Article  CAS  Google Scholar 

  24. Otsuka M, Teraoka R, Matsuda Y. Physicochemical properties of nitrofurantoin anhydrate and monohydrate and their dissolution.Chem Pharm Bull. 1991;39:2667–2670.

    CAS  Google Scholar 

  25. Airaksinen S, Luukkonen P, Jørgensen A, Karjalainen M, Rantanen J, Yliruusi J. Effects of excipients on hydrate formation in wet masses containing theophylline.J Pharm Sci. 2003;92:516–528.

    Article  CAS  Google Scholar 

  26. Zhou GX, Ge Z, Dorwart J, et al. Determination and differentiation of surface and bound water in drug substances by near-infrared spectroscopy.J Pharm Sci. 2003;92:1058–1065.

    Article  CAS  Google Scholar 

  27. Bronlund J, Paterson T. Moisture sorption isotherms for crystalline, amorphous and predominantly crystalline lactose powders.Int Dairy J. 2004;14:247–254.

    Article  CAS  Google Scholar 

  28. Zografi G, Kontny MJ, Yang AYS, Brenner GS. Surface area and water vapor sorption of macrocrystalline cellulose.Int J Pharm. 1984;18:99–116.

    Article  CAS  Google Scholar 

  29. Heidemann DR, Jarosz PJ. Preformulation studies involving moisture uptake in solid dosage forms.Pharm Res. 1991;8:292–297.

    Article  CAS  Google Scholar 

  30. Kibbe AH. Starch, pregelatinized. In: Kibbe AH, ed.Handbook of Pharmaceutical Excipients. 3rd ed. Washington DC: American Pharmaceutical Association, 2000;528–530.

    Google Scholar 

  31. Delwiche SR, Pitt RE, Norris KH. Examination of starch-water and cellulose-water interactions with near-infrared (NIR) diffuse reflectance spectroscopy.Starch. 1991;43:415–422.

    Article  CAS  Google Scholar 

  32. Kawashima Y, Takeuchi H, Hino T, et al. The effects of particle size, degree of hydroxypropyl substittution and moisture content of low-substituted hydroxypropylcellulose on the compactibility of acetaminophen and the drug release rate of the resultant tablets.STP Pharma Sci. 1993;3:170–177.

    CAS  Google Scholar 

  33. Garnier S, Petit S, Coquerel G. Dehydration mechanism and crystallization behavior of lactose.J Therm Anal Calorim. 2002;68:489–502.

    Article  CAS  Google Scholar 

  34. Fukuoka M, Ohta K, Watanabe H. Determination of the terminal extent of starch gelatinization in a limited water system by DSC.J Food Eng. 2002;53:39–42.

    Article  Google Scholar 

  35. Alvarez-Lorenzo C, Gómez-Amoza JL, Martínez-Pacheco R, Souto C, Concheiro A. Interactions between hydroxylpropylcelluloses and vapour/liquid water.Eur J Pharm Biopharm. 2000;50:307–318.

    Article  CAS  Google Scholar 

  36. Taylor LS, Langkilde FW, Zografi G. Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers.J Pharm Sci. 2001;90:888–901.

    Article  CAS  Google Scholar 

  37. Zhang GGZ, Law D, Schmitt EA, Qiu Y. Phase transformation considerations during process development and manufacture of solid oral dosage forms.Adv Drug Deliv Rev. 2004;56:371–390.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sari Airaksinen.

Additional information

Published: October 6, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Airaksinen, S., Karjalainen, M., Kivikero, N. et al. Excipient selection can significantly affect solid-state phase transformation in formulation during wet granulation. AAPS PharmSciTech 6, 41 (2005). https://doi.org/10.1208/pt060241

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt060241

Keywords

Navigation