Skip to main content

Advertisement

Log in

Vectors for airway gene delivery

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Delivery of genes to the airway epithelium for therapeutic purposes seemed easy at first, because the epithelial cells interface with the environment and are therefore accessible. However, problems encountered were more substantial than were originally expected. Nonviral systems may be preferred for long-term gene expression, for they can be dosed repeatedly. Two nonviral gene transfer systems have been in clinical trials, lipid-mediated gene transfer and DNA nanoparticles. Both have sufficient efficiency to be candidates for correction of the cystic fibrosis defect, and both can be dosed repeatedly. However, lipid-mediated gene transfer in the first generation provokes significant inflammatory toxicity, which may be engineered out by adjustments of the lipids, the plasmid CpG content, or both. Both lipid-mediated gene transfer and DNA nanoparticles in the first generation have short duration of expression, but reengineering of the plasmid DNA to contain mostly eukaryotic sequences may address this problem. Considerable advances in the understanding of the cellular uptake and expression of these agents and in their practical utility have occurred in the last few years; these advances are reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-XI.Science. 2003;302:415–419.

    Article  PubMed  CAS  Google Scholar 

  2. Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors.Hum Gene Ther. 2006;17:253–263.

    Article  PubMed  CAS  Google Scholar 

  3. Pickles RJ, McCarty D, Matsui H, Hart PJ, Randell SH, Boucher RC. Limited entry of adenoviral vectors into well differentiated airway epithelium is responsible for inefficient gene transfer.J Vivol. 1998;72:6014–6023.

    CAS  Google Scholar 

  4. Summerford C, Samulski RJ. Membrane-associated heparin sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions.J Virol. 1998;72:1438–1445.

    PubMed  CAS  Google Scholar 

  5. Goldman MJ, Lee PS, Yang JS, Wilson JM. Lentiviral vectors for gene therapy of cystic fibrosis.Hum Gene Ther. 1997;8:2261–2268.

    Article  PubMed  CAS  Google Scholar 

  6. Duan D, Jr, Yue Y, Jr, McCray PB, Jr, Engelhardt JF. Polarity influences the efficiency of recombinant adenoassociated virus infection in differentiated airway epithelia.Hum Gene Ther. 1998;9:2761–2776.

    Article  PubMed  CAS  Google Scholar 

  7. Boucher RC. Status of gene therapy for cystic fibrosis lung disease.J Clin Invest. 1999;103:441–445.

    Article  PubMed  CAS  Google Scholar 

  8. Harvey BG, Leopold PL, Hackett NR, et al. Airway epithelial CFTR mRNA expression in cystic fibrosis patients after repetitive administration of a recombinant adenovirus.J Clin Invest. 1999;104:1245–1255.

    Article  PubMed  CAS  Google Scholar 

  9. Joos K, Chirmule N. Immunity to adenovirus and adeno-associated viral vectors: implication for gene therapy.Gene Ther. 2003;10:955–963.

    Article  CAS  Google Scholar 

  10. Sun JY, Anand-Jawa V, Chatterjee S, Wong KK. Immune responses to adeno-associated virus and its recombinant vectors.Gene Ther. 2003;10:964–976.

    Article  PubMed  CAS  Google Scholar 

  11. Moss RB, Rodman D, Spencer LT, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial.Chest. 2002;125:509–521.

    Article  Google Scholar 

  12. McElvaney NG, Crystal RG. IL-6 release and airway administration of human CFTR cDNA adenovirus vector.Nat Med. 1995;1:182–184.

    Article  PubMed  CAS  Google Scholar 

  13. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer.Mol Genet Metab. 2003;80:148–158.

    Article  PubMed  CAS  Google Scholar 

  14. Muruve DA. The innate immune response to adenovirus vectors.Hum Gene Ther. 2004;15:1157–1166.

    Article  PubMed  CAS  Google Scholar 

  15. Cotten M, Wagner E, Zatloukal K, Phillips S, Curiel DT, Birnstiel ML. High-efficiency receptor-mediated delivery of small and large (48 kilobase) gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles.Proc Natl Acad Sci USA. 1992;89:6094–6098.

    Article  PubMed  CAS  Google Scholar 

  16. Bieber T., Meissner W, Kostin S, Niemann A, Elsasser HP. Intracellular route and transcriptional compefence of polyethylenimine-DNA complexes.J Cointrol Release. 2002;82:441–454.

    Article  CAS  Google Scholar 

  17. Stern M, Ulrich K, Geddes DM, Alton EW. Poly(D, L-lactide-coglycolide)/DNA microspheres to facilitate prolonged transgene expression in airway epithelium in vitro, ex vivo and in vivo.Gene Ther. 2003;10:1282–1288.

    Article  PubMed  CAS  Google Scholar 

  18. Grosse S, Aron Y, Honore I, et al. Lactosylated polyethylenimine for gene transfer into airway epithelial cells: role of the sugar moiety in cell delivery and intracellular trafficking of the complexes.J Gene Med. 2004;6:345–356.

    Article  PubMed  CAS  Google Scholar 

  19. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligandpolyethylene glycol-polyethylenimine/DNA complexes.J Control Release. 2003;91:173–181.

    Article  PubMed  CAS  Google Scholar 

  20. Hashida H, Miyamoto M, Cho Y, et al. Fusion, of HIV-1 Tat protein transduction domain to poly-lysine as a new DNA delivery tool.Br J Cancer. 2004;90:1252–1258.

    Article  PubMed  CAS  Google Scholar 

  21. Chen X, Davis PB. Compacted DNA nanoparticles transfect cells by binding to cell surface nucleolin.Mol Ther. 2006;13:S152.

    Article  CAS  Google Scholar 

  22. Mattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M. Endosomes, lysosomes: their implication in gene transfer.Adv Drug Deliv Rev. 2000;41:201–208.

    Article  Google Scholar 

  23. Mastrobattista E, Koning GA, van Bloois L, Filipe AC, Jiskoot W, Storn G. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins.J Biol Chem. 2002;277:27135–27143.

    Article  PubMed  CAS  Google Scholar 

  24. Boussif O, Lezoualc'h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine.Proc Natl Acad Sci U S A. 1995;92:7297–7301.

    Article  PubMed  CAS  Google Scholar 

  25. Akine A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis.J Gene Med. 2005;7:657–663.

    Article  CAS  Google Scholar 

  26. Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. Size-dependent DNA mobility in cytoplasm and nucleus.J Biol Chem. 2000;275:1625–1629.

    Article  PubMed  CAS  Google Scholar 

  27. Suh J, Wirtz D, Hanes J. Real-time intracellular transport of gene nanocarriers studied by multiple particle tracking.Biotechnol Prog. 2004;20:598–602.

    Article  PubMed  CAS  Google Scholar 

  28. Ludtke JJ, Zhang G, Sebestyen MG, Wolff JA. A nuclear localization signal can enhance both the nuclear transport and expression of 1 kb DNA.J Cell Sci. 1999;112:2033–2041.

    PubMed  CAS  Google Scholar 

  29. Zabner J, Fasbender AJ, Moninger T, Poellinger DA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid.J Biol Chem. 1995;270:18997–19007.

    Article  PubMed  CAS  Google Scholar 

  30. Wilke M, Fortunati E, van den Broek M, Hoogeveen AT, Scholte BJ. Efficacy of a peptide-based gene delivery system depends on mitotic activity.Gene Ther. 1996;3:1133–1142.

    PubMed  CAS  Google Scholar 

  31. Fasbender A, Zabner J, Zeiher BG, Welsh MJ. A low rate of cell proliferation and reduced DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia.Gene Ther. 1997;4:1173–1180.

    Article  PubMed  CAS  Google Scholar 

  32. Jiang C, O'Connor SP, Fang SL, et al. Efficiency of cationic lipid-mediated transfection of polarized and differentiated airway epithelial cells in vitro and in vivo.Hum Gene Ther. 1998;9:1531–1542.

    Article  PubMed  CAS  Google Scholar 

  33. Tseng WC, Haselton FR, Giorgio TD. Mitosis enhances transgene expression of plasmid delivered by cationic liposomes.Biochim Biophys Acta. 1999;1445:53–64.

    PubMed  CAS  Google Scholar 

  34. Mortimer J, Tam P, MacLachlan I, Graham RW, Saravolac EG, Joshi PB. Cationic lipid-mediated transfection of cells in culture requires mitotic activity.Gene Ther. 1999;6:403–411.

    Article  PubMed  CAS  Google Scholar 

  35. Dworetzky SI, Feldherr CM. Translocation of RNA-coated gold particles through the nuclear pores of oocytes.J Cell Biol. 1988;106:575–584.

    Article  PubMed  CAS  Google Scholar 

  36. Feldherr CM, Akin D. Signal-mediated nuclear transport in proliferating and growth-arrested BALC/c 3T3 cells.J Cell Biol. 1991;115:933–939.

    Article  PubMed  CAS  Google Scholar 

  37. Liu G, Li D, Pasumarthy MK, et al. Nanoparticles of compacted DNA transfect post-mitotic cells.J Biol Chem. 2003;278:32578–32586.

    Article  PubMed  CAS  Google Scholar 

  38. Wu CH, Wilson JM, Wu GY. Targeting genes: delivery and persistent expression of a foreign gene driven by mammalian regulatory elements in vivo.J Biol Chem. 1989;264:16985–16987.

    PubMed  CAS  Google Scholar 

  39. Wilson JM, Grossman M, Wu CH, Chowdhury NR, Wu GY, Chowdhury JR. Hepatocyte-directed gene transfer in vivo leads to transient improvement of hypercholesterolemia in low density lipoprotein receptor-deficient rabbits.J Biol Chem. 1992;267:963–967.

    PubMed  CAS  Google Scholar 

  40. Wu GY, Wilson JM, Shalaby F, Grossman M, Shafritz DA, Wu CH. Receptor-mediated gene delivery in vivo. Partial correction of genetic analbuminemia in Nagase rats.J Biol Chem. 1991;266:14338–14342.

    PubMed  CAS  Google Scholar 

  41. Perales JC, Ferkol T, Beegen H, Ratnoff OD, Hanson RW. Gene transferin vivo: sustained expression and regulation of genes introduced into the liver by receptor-targeted uptake.Proc Natl Acad Sci USA. 1994;91:4086–4090.

    Article  PubMed  CAS  Google Scholar 

  42. Perales JC, Ferkol T, Molas M, Hanson RW. An evaluation of receptor-mediated gene transfer using synthetic DNA-ligand complexes.Eur J Biochem. 1994;226:255–266.

    Article  PubMed  CAS  Google Scholar 

  43. Perales JC, Grossmann GA, Molas M, et al. Biochemical and functional characterization of DNA complexes capable of targeting genes to hepatocytes via the asialoglycoprotein receptor.J Biol Chem. 1997;272:7398–7407.

    Article  PubMed  CAS  Google Scholar 

  44. Ferkol T, Perales JC, Eckman E, Kaetzel CS, Hanson RW, Davis PB. Gene transfer into, the airway epithelium of animals by targeting the polymeric immunoglobulin receptor.J Clin Invest. 1995;95:493–502.

    Article  PubMed  CAS  Google Scholar 

  45. Ziady AG, Gedeon CR, Miller T, et al. Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticlesin vivo.Mol Ther. 2003;8:936–947.

    Article  PubMed  CAS  Google Scholar 

  46. Kowalczyk TH, Muhammad O, Oette SM, et al. Structural and functional storage stability of DNA condensed with PEGylated polylysine.Mol Ther. 2003;7:S375.

    Article  CAS  Google Scholar 

  47. Kowalczyk TH, Pasumarthy MK, Gedeon C, et al. Type of polylysine counterion influences morphology and biological function of condensed DNA.Mol Ther. 2001;3:S359.

    Article  CAS  Google Scholar 

  48. Fink TL, Klepcyk PJ, Oette SM, et al. Plasmid size up to 20 kbp does not limit effectivein vivo lung gene transfer using compacted DNA nanoparticles.Gene Ther. 2006;13:1048–1051.

    Article  PubMed  CAS  Google Scholar 

  49. Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Non-viral gene delivery for ocular diseases with compacted DNA nanoparticles.Mol Ther. 2005;11:258.

    Article  Google Scholar 

  50. Yurek DM, Fletcher-Turmer A, Cooper MJ. Compacted DNA nanoparticles effectively transfect brain cellsin vitro andin vivo.Mol Ther. 2005;11:253.

    Article  Google Scholar 

  51. Kube D, Davis PB. Intracellular trafficking of nontargeted stabilized molecular conjugates in human airway epithelia cells.Mol Ther. 2003;7:371.

    Google Scholar 

  52. Noone PG, Hohneker KW, Zhou Z, et al. Safety and biological efficacy of a lipid-CFTR complex for gene transfer in the nasal epithelium of adult patients with cystic fibrosis.Mol Ther. 2000;1:105–114.

    Article  PubMed  CAS  Google Scholar 

  53. Hyde SC, Southern KW, Gileadi U, et al. Repeat administration of DNA/liposomes to the masal epithelium of patients with cystic fibrosis.Gene Ther. 2000;7:1156–1165.

    Article  PubMed  CAS  Google Scholar 

  54. Porteous DJ, Dorin JR, McLachlan G, et al. Evidence for safety and efficacy of DOTAP cationic liposome mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis.Gene Ther. 1997;4:210–218.

    Article  PubMed  CAS  Google Scholar 

  55. Alton EW, Stern M, Farley R, et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial.Lancet. 1999;353:947–954.

    Article  PubMed  CAS  Google Scholar 

  56. Ruiz FE, Clancy JP, Perricone MA, et al. A clinical inflammatory syndrome attributable to aerosolized lipid-DNA administration in cystic fibrosis.Hum Gene Ther. 2001;12:751–761.

    Article  PubMed  CAS  Google Scholar 

  57. Yew NS, Zhao H, Wu IH, et al. Reduced inflammatory response to plasmid DNA vectors by elimination and inhibition of immunostimulatory, CpG motifs.Mol Ther. 2000;1:255–262.

    Article  PubMed  CAS  Google Scholar 

  58. Yew NS, Wang KX, Przybylska M, et al. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid: pDNA complexes.Hum Gene Ther. 1999;10:223–234.

    Article  PubMed  CAS  Google Scholar 

  59. Chen ZY, He CY, Kay MA. Improved production and purification of minicircle DNA vector free of plasmid bacterial sequences and capable of persistent transgene expression in vivo.Hum Gene Ther. 2005;16:126–131.

    Article  PubMed  CAS  Google Scholar 

  60. Chen ZY, He CY, Meuse L, Kay MA. Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo.Gene Ther. 2004;11:856–864.

    Article  PubMed  CAS  Google Scholar 

  61. Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo.Mol Ther. 2003;8:495–500.

    Article  PubMed  CAS  Google Scholar 

  62. Konstan MW, Davis PB, Wagener JS, et al. Compacted DNA nanoparticles administered to the nasal mucosa of cystic fibrosis subjects are safe and demonstrate partial to complete cystic fibrosis transmembrane regulator reconstitution.Hum Gene Ther. 2004;15:1255–1269.

    Article  PubMed  CAS  Google Scholar 

  63. Ziady AG, Gedeon CR, Muhammad O, et al. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung.Mol Ther. 2003;8:948–956.

    Article  PubMed  CAS  Google Scholar 

  64. Rhee M, Davis PB. Mechanism of uptake of C105Y, a novel cell-penetrating peptide.J Biol Chem. 2005;281:1233–1240.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela B. Davis.

Additional information

Published: January 19, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, P.B., Cooper, M.J. Vectors for airway gene delivery. AAPS J 9, 2 (2007). https://doi.org/10.1208/aapsj0901002

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj0901002

Keywords

Navigation