Skip to main content

Advertisement

Log in

Optimizing targeted gene delivery: Chemical modification of viral vectors and synthesis of artificial virus vector systems

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In comparison to classical medicines, gene therapy has the potential to mediate the highest possible level of therapeutic specificity. Every normal or diseased cell can switch on or off a gene expression cassette in a tissue-, disease-, and time-dependent fashion, by use of specific transcription factors that are active only in a given unique situation. In practice, we face the problem in realizing the concept: the delivery of nucleic acids into target cells is very ineffective and presents a formidable challenge. Key issues for future developments include improved targeting, enhanced intracellular uptake, and reduced toxicity of gene vectors. The currently used classes of vectors have complementary characteristics, such as high intracellular efficiency of viral vectors on the one hand and low immunogenicity and greater flexibility of nonviral vectors on the other hand. The merge of viral and nonviral vector technologies is highlighted as an encouraging strategy for the future; concepts include chemically modified viral vectors (“chemo-viruses”) and synthesis of virus-like systems (“synthetic viruses”). Examples for the development of vectors toward artificial synthetic viruses are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lipinski KS, Djeha HA, Gawn J, et al. Optimization of a synthetic beta-catenin-dependent promoter for tumor-specific cancer gene therapy. Mol Ther. 2004;10:150–161.

    Article  PubMed  CAS  Google Scholar 

  2. Brunori M, Malerba M, Kashiwazaki H, Iggo R. Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J Virol. 2001;75:2857–2865.

    Article  PubMed  CAS  Google Scholar 

  3. Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem. 1987;262:4429–4432.

    PubMed  CAS  Google Scholar 

  4. McCormick F. Cancer gene therapy: fringe or cutting edge?. Nat Rev Cancer. 2001;1:130–141.

    Article  PubMed  CAS  Google Scholar 

  5. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther. 2000;11:2389–2401.

    Article  PubMed  CAS  Google Scholar 

  6. Hacein-Bey-Abina S, Le Deist F, Carlier F, et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med. 2002;346:1185–1193.

    Article  PubMed  CAS  Google Scholar 

  7. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–419.

    Article  PubMed  CAS  Google Scholar 

  8. Fischer A, Hacein-Bey-Abina S, Lagresle C, Garrigue A, Cavazana-Calvo M. Gene therapy of severe combined immunodeficiency disease: proof of principle of efficiency and safety issues. Gene therapy, primary immunodeficiencies, retrovirus, lentivirus, genome. Bull Acad Natl Med. 2005;189:779–785.

    PubMed  CAS  Google Scholar 

  9. Marshall E. Gene therapy death prompts review of adenovirus vector. Science. 1999;286:2244–2245.

    Article  PubMed  CAS  Google Scholar 

  10. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80:148–158.

    Article  PubMed  CAS  Google Scholar 

  11. Kreppel F, Kochanek S. Long-term transgene expression in proliferating cells mediated by episomally maintained high-capacity adenovirus vectors. J Virol. 2004;78:9–22.

    Article  PubMed  CAS  Google Scholar 

  12. Schiedner G, Bloch W, Hertel S, et al. A hemodynamic response to intravenous adenovirus vector particles is caused by systemic Kupffer cell-mediated activation of endothelial cells. Hum Gene Ther. 2003;14:1631–1641.

    Article  PubMed  CAS  Google Scholar 

  13. Schiedner G, Hertel S, Johnston M, Dries V, van Rooijen N, Kochanek S. Selective depletion or blockade of Kupffer cells leads to enhanced and prolonged hepatic transgene expression using high-capacity adenoviral vectors. Mol Ther. 2003;7:35–43.

    Article  PubMed  CAS  Google Scholar 

  14. Nüdome T, Huang L. Gene therapy progress and prospects: nonviral vectors. Gene Ther. 2002;9:1647–1652.

    Article  CAS  Google Scholar 

  15. Wagner E. Strategies to improve DNA polyplexes for in vivo gene transfer: will “artificial viruses” be the answer? Pharm Res. 2004;21:8–14.

    Article  PubMed  CAS  Google Scholar 

  16. Wang R, Epstein J, Charoenvit Y, et al. Induction in humans of CD8+ and CD4+ T cell and antibody responses by sequential immunization with malaria DNA and recombinant protein. J Immunol. 2004;172:5561–5569.

    PubMed  CAS  Google Scholar 

  17. Mathiesen I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther. 1999;6:508–514.

    Article  PubMed  CAS  Google Scholar 

  18. Liu F, Song Y, Liu D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999;6:1258–1266.

    Article  PubMed  CAS  Google Scholar 

  19. Zhang G, Budker V, Wolff JA, High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther. 1999;10:1735–1737.

    Article  PubMed  CAS  Google Scholar 

  20. Hagstrom JE, Hegge J, Zhang G, et al. A facile nonviral method for delivering genes and siRNAs to skeletal muscle of mammalian limbs. Mol Ther. 2004;10:386–398.

    Article  PubMed  CAS  Google Scholar 

  21. Chen ZY, he CY, Meuse L, Kay MA. Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo. Gene Ther. 2004;11:856–864.

    Article  PubMed  CAS  Google Scholar 

  22. Hodges BL, Taylor KM, Joseph MF, Bourgeois SA, Scheule RK. Long-term transgene expression from plasmid DNA gene therapy vectors is negatively affected by CpG dinucleotides. Mol Ther. 2004;10:269–278.

    Article  PubMed  CAS  Google Scholar 

  23. Plank C, Jr, Mechtler K, Jr, Szoka FC, Jr, Wagner E. Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther. 1996;7:1437–1446.

    Article  PubMed  CAS  Google Scholar 

  24. Wickham TJ. Ligand-directed targeting of genes to the site of disease. Nat Med. 2003;9:135–139.

    Article  PubMed  CAS  Google Scholar 

  25. Russell SJ, Hawkins RE, Winter G. Retroviral vectors displaying functional antibody fragments. Nucleic Acids Res. 1993;21:1081–1085.

    Article  PubMed  CAS  Google Scholar 

  26. Hatziioannou T, Delahaye E, Martin F, Russell SJ, Cosset FL. Retroviral display of functional binding domains fused to the amino terminus of influenza hemagglutinin. Hum Gene Ther. 1999;10:1533–1544.

    Article  PubMed  CAS  Google Scholar 

  27. Gordon EM, Chen ZH, Liu L, et al. Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum Gene Ther. 2001;12:193–204.

    Article  PubMed  CAS  Google Scholar 

  28. Ried MU, Girod A, Leike K, Buning H, Hallek M. Adeno-associated virus capsids displaying immunoglobulin-binding domains permit antibody-mediated vector retargeting to specific cell surface receptors. J Virol. 2002;76:4559–4566.

    Article  PubMed  CAS  Google Scholar 

  29. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol. 2000;74:6875–6884.

    Article  PubMed  CAS  Google Scholar 

  30. Nettelbeck DM, Miller DW, Jerome V, et al. Targeting of adenovirus to endothelial cells by a bispecific single-chain diabody directed against the adenovirus fiber knob domain and human endoglin (CD105). Mol Ther. 2001;3:882–891.

    Article  PubMed  CAS  Google Scholar 

  31. Hood JD, Bednarski M, Frausto R, et al. Tumor regression by targeted gene delivery to the neovasculature. Science. 2002;296:2404–2407.

    Article  PubMed  CAS  Google Scholar 

  32. Hofland HE, Masson C, Iginla S, et al. Folate-targeted gene transfer in vivo. Mol Ther. 2002;5:739–744.

    Article  PubMed  CAS  Google Scholar 

  33. Plank C, Zatloukal K, Cotten M, Mechtler K, Wagner E. Gene transfer into hepatocytes using asialoglycoprotein receptor-mediated endocytosis of DNA complexed with an artificial tetra-antennary galactose ligand. Bioconjug Chem. 1992;3:533–539.

    Article  PubMed  CAS  Google Scholar 

  34. Ziady AG, Ferkol T, Dawson DV, Perlmutter DH, Davis PB. Chain length of the polylysine in receptor-targeted gene transfer complexes affects duration of reporter gene expression both in vitro and in vivo. J Biol Chem. 1999;274:4908–4916.

    Article  PubMed  CAS  Google Scholar 

  35. Kim TG, Kang SY, Kang JH, et al. Gene transfer into human hepatoma cells by receptor-associated protein/polylysine conjugates. Bioconjug Chem. 2004;15:326–332.

    Article  PubMed  CAS  Google Scholar 

  36. Wolschek MF, Thallinger C, Kursa M, et al. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology. 2002;36:1106–1114.

    Article  PubMed  CAS  Google Scholar 

  37. Xu L, Pirollo KF, Tang WH, Rait A, Chang EH. Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Hum Gene Ther. 1999;10:2941–2952.

    Article  PubMed  CAS  Google Scholar 

  38. Buschle M, Cotten M, Kirlappos H, et al. Receptor-mediated gene transfer into human T lymphocytes via binding of DNA/CD3 antibody particles to the CD3 T cell receptor complex. Hum Gene Ther. 1995;6:753–761.

    Article  PubMed  CAS  Google Scholar 

  39. Chiu SJ, Ueno NT, Lee RJ. Tumor-targeted gene delivery via anti-HER2 antibody (trastuzumab, Herceptin), conjugated polyethylenimine. J Control Release. 2004;97:357–369.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y, Zhang YF, Bryant J, Charles A, Boado RJ, Pardridge WM. Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res. 2004;10:3667–3677.

    Article  PubMed  CAS  Google Scholar 

  41. Schatzlein AG. Targeting of synthetic gene delivery systems. J Biomed Biotechnol. 2003;2003:149–158.

    Article  PubMed  Google Scholar 

  42. Wagner E, Culmsee C, Boeckle S. Targeting of polyplexes: toward synthetic virus vector systems. Adv Genet. 2005;53:333–354.

    PubMed  CAS  Google Scholar 

  43. Wu GY, Wilson JM, Shalaby F, Grossman M, Shafritz DA, Wu CH. Receptor-mediated gene delivery in vivo: partial correction of genetic analbuminemia in Nagase rats. J Biol Chem. 1991;266:14338–14342.

    PubMed  CAS  Google Scholar 

  44. Kircheis R, Schuller S, Brunner S, et al. Polycation-based DNA complexes for tumor-targeted gene delivery in vivo. J Gene Med. 1999;1:111–120.

    Article  PubMed  CAS  Google Scholar 

  45. Chollet P, Favrot MC, Hurbin A, Coll JL. Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med. 2002;4:84–91.

    Article  PubMed  Google Scholar 

  46. Monck MA, Mori A, Lee D, et al. Stabilized plasmid-lipid particles: pharmacokinetics and plasmid delivery to distal tumors following intravenous injection. J Drug Target. 2000;7:439–452.

    PubMed  CAS  Google Scholar 

  47. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6:595–605.

    Article  PubMed  CAS  Google Scholar 

  48. Kircheis R, Wightman L, Schreiber A, et al. Polyethylenimine/DNA complexes shielded by transferrin target gene expression to tumors after systemic application. Gene Ther. 2001;8:28–40.

    Article  PubMed  CAS  Google Scholar 

  49. Hildebrandt IJ, Iyer M, Wagner E, Gambhir SS. Optical imaging of transferrin-targeted PEI/DNA complexes in living subjects. Gene Ther. 2003;10:758–764.

    Article  PubMed  CAS  Google Scholar 

  50. Kircheis R, Ostermann E, Wolschek MF, et al. Tumor-targeted gene delivery of tumor necrosis factor-alpha induces tumor necrosis and tumor regression without systemic toxicity. Cancer Gene Ther. 2002;9:673–680.

    Article  PubMed  CAS  Google Scholar 

  51. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. J Control Release. 2003;91:173–181.

    Article  PubMed  CAS  Google Scholar 

  52. Goncalves C, Mennesson E, Fuchs R, Gorvel JP, Midoux P, Pichon C. Macropinocytosis of polyplexes and recycling of plasmid via the clathrin-dependent pathway impair the transfection efficiency of human hepatocarcinoma cells. Mol Ther. 2004;10:373–385.

    Article  PubMed  CAS  Google Scholar 

  53. Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolaemediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol Ther. 2005;12:468–474.

    Article  PubMed  CAS  Google Scholar 

  54. Kopatz I, Remy JS, Behr JP. A model for non-viral gene delivery: through syndecan adhesion molecules and powered by actin. J Gene Med. 2004;6:769–776.

    Article  PubMed  CAS  Google Scholar 

  55. Bausinger R, von Gersdorff K, Ogris M, et al. The transport of nanosized gene carriers unraveled by live-cell imaging. Angew Chem Weinheim Bergstr Ger. 2006; 118:1598–1602.

    Google Scholar 

  56. Sonawane ND, Jr, Szoka FC, Jr, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem. 2003;278:44826–44831.

    Article  PubMed  CAS  Google Scholar 

  57. Brunner S, Sauer T, Carotta S, Cotten M, Saltik M, Wagner E. Cell cycle dependence of gene transfer by lipoplex, polyplex and recombinant adenovirus. Gene Ther. 2000;7:401–407.

    Article  PubMed  CAS  Google Scholar 

  58. Zabner J, Fasbender AJ, Moninger T, Poellinger KA, Welsh MJ. Cellular and molecular barriers to gene transfer by a cationic lipid. J Biol Chem. 1995;270:18997–19007.

    Article  PubMed  CAS  Google Scholar 

  59. Liu G, Aronovich EL, Cui Z, Whitley CB, Hackett PB. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J Gene Med. 2004;6:574–583.

    Article  PubMed  CAS  Google Scholar 

  60. Portlock JL, Calos MP. Site-specific genomic strategies for gene therapy. Curr Opin Mol Ther. 2003;5:376–382.

    PubMed  CAS  Google Scholar 

  61. Lipps HJ, Jenke AC, Nehlsen K, Scinteie MF, Stehle IM, Bode J. Chromosome-based vectors for gene therapy. Gene. 2003;304:23–33.

    Article  PubMed  CAS  Google Scholar 

  62. Magin-Lachmann C, Kotzamanis G, D'Aiuto L, Wagner E, Huxley C. Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1: new vectors for in vitro and in vivo delivery. BMC Biotechnol. 2003;3:2.

    Article  PubMed  Google Scholar 

  63. Chen ZY, He CY, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther. 2003;8:495–500.

    Article  PubMed  CAS  Google Scholar 

  64. Lim YB, Kim SM, Suh H, park JS. Biodegradable, endosome disruptive, and cationic network-type polymer as a highly efficient and nontoxic gene delivery carrier. Bioconjug Chem. 2002;13:952–957.

    Article  PubMed  CAS  Google Scholar 

  65. Kim YH, Park JH, Lee M, Kim YH, Park TG, Kim SW. Polyethylenimine with acid-labile linkages as a biodegradable gene carrier. J Control Release. 2005;103:209–219.

    Article  PubMed  CAS  Google Scholar 

  66. Wang J, Gao SJ, Zhang PC, Wang S, Mao HQ, Leong KW. Polyphosphoramidate gene carriers: effect of charge group on gene transfer efficiency. Gene Ther. 2004;11:1001–1010.

    Article  PubMed  CAS  Google Scholar 

  67. Anderson DG, Akinc A, Hossain N, Langer R. Structure/property studies of polymeric gene delivery using a library of poly(beta-amino esters). Mol Ther. 2005;11:426–434.

    Article  PubMed  CAS  Google Scholar 

  68. Zhong Z, Song Y, Engbersen JF, Lok MC, Hennink WE, Feijen J. A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s. J Control Release. 2005;109:317–329.

    Article  PubMed  CAS  Google Scholar 

  69. Kloeckner J, Boeckle S, Persson D, et al. DNA polyplexes based on degradable oligoethylenimine-derivatives: combination with EGF receptor targeting and endosomal release functions. J Control Release. 2006;[Epub ahead of print].

  70. Croyle MA, Chirmule N, Zhang Y, Wilson JM. “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol. 2001;75:4792–4801.

    Article  PubMed  CAS  Google Scholar 

  71. Lanciotti J, Song A, Doukas J, et al. Targeting adenoviral vectors using heterofunctional polyethylene glycol FGF2 conjugates. Mol Ther. 2003;8:99–107.

    Article  PubMed  CAS  Google Scholar 

  72. O'Riordan CR, Lachapelle A, Delgado C, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther. 1999;10:1349–1358.

    Article  PubMed  Google Scholar 

  73. Fisher KD, Stallwood Y, Green NK, Ulbrich K, Mautner V, Seymour LW. Polymer-coated adenovirus permits efficient retargeting and evades neutralizing antibodies. Gene Ther. 2001;8:341–348.

    Article  PubMed  CAS  Google Scholar 

  74. Ogawara K, Rots MG, Kok RJ, et al. A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum Gene Ther. 2004;15:433–443.

    Article  PubMed  CAS  Google Scholar 

  75. Kreppel F, Gackowski J, Schmidt E, Kochanek S. Combined genetic and chemical capsid modifications enable flexible and efficient de- and retargeting of adenovirus vectors. Mol Ther. 2005;12:107–117.

    Article  PubMed  CAS  Google Scholar 

  76. Curiel DT, Wagner E, Cotten M, et al. High-efficiency gene transfer mediated by adenovirus coupled to DNA-polylysine complexes. Hum Gene Ther. 1992;3:147–154.

    Article  PubMed  CAS  Google Scholar 

  77. Wagner E, Zatloukal K, Cotten M, et al. Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes. Proc Natl Acad Sci USA. 1992;89:6099–6103.

    Article  PubMed  CAS  Google Scholar 

  78. Yotnda P, Davis AR, Hicks MJ, Templeton NS, Brenner MK. Liposomal enhancement of the antitumor activity of conditionally replication-competent adenoviral plasmids. Mol Ther. 2004;9:489–495.

    Article  PubMed  CAS  Google Scholar 

  79. Boeckle S, von Gersdorff K, van der Piepen S, Culmsee C, Wagner E, Ogris M. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J Gene Med. 2004;6:1102–1111.

    Article  PubMed  CAS  Google Scholar 

  80. Zou SM, Erbacher P, Remy JS, Behr JP. Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse. J Gene Med. 2000;2:128–134.

    Article  PubMed  CAS  Google Scholar 

  81. Ogris M, Carlisle RC, Bettinger T, Seymour LW. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors. J Biol Chem. 2001;276:47550–47555.

    Article  PubMed  CAS  Google Scholar 

  82. Boeckle S, Wagner E, Ogris M. C-versus N-terminally linked melittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes. J Gene Med. 2005;7:1335–1347.

    Article  PubMed  CAS  Google Scholar 

  83. Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 2006;3:e6.

    Article  PubMed  CAS  Google Scholar 

  84. Boeckle S, Fahrmeir J, Roedl W, Ogris M, Wagner E. Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. 2006;112:240–248.

    Article  PubMed  CAS  Google Scholar 

  85. Walker GF, Fella C, Pelisek J, et al. Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Mol Ther. 2005;11:418–425.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Wagner.

Additional information

Published: December 8, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boeckle, S., Wagner, E. Optimizing targeted gene delivery: Chemical modification of viral vectors and synthesis of artificial virus vector systems. AAPS J 8, 83 (2006). https://doi.org/10.1208/aapsj080483

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj080483

Keywords

Navigation