Skip to main content

Advertisement

Log in

In Situ Gelling Gelrite/Alginate Formulations as Vehicles for Ophthalmic Drug Delivery

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The objective of this study was to develop an ion-activated in situ gelling vehicle for ophthalmic delivery of matrine. The rheological properties of polymer solutions, including Gelrite, alginate, and Gelrite/alginate solution, were evaluated. In addition, the effect of formulation characteristics on in vitro release and in vivo precorneal drug kinetic of matrine was investigated. It was found that the optimum concentration of Gelrite solution for the in situ gel-forming delivery systems was 0.3% (w/w) and that for alginate solution was 1.4% (w/w). The mixture of 0.2% Gelrite and 0.6% alginate solutions showed a significant enhancement in gel strength at physiological condition. On the basis of the in vitro results, the Gelrite formulations of matrine-containing alginate released the drug most slowly. For each tested polymer solution, the concentration of matrine in the precorneal area was higher than that of matrine-containing simulated tear fluid (STF) almost at each time point (p < 0.05). The area under the curve of formulation 16 (0.2%Gelrite/0.6%alginate) was 4.65 times greater than that of containing matrine STF. Both the in vitro release and in vivo pharmacological studies indicated that the Gelrite/alginate solution had the better ability to retain drug than the Gelrite or alginate solutions alone. The tested formulation was found to be almost non-irritant in the ocular irritancy test. The overall results of this study revealed that the Gelrite/alginate mixture can be used as an in situ gelling vehicle to enhance ocular retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lee VHL, Robinson JR. Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci. 1979;68:673–84.

    Article  CAS  PubMed  Google Scholar 

  2. Higuchi WI. The analysis of data on the medicament release from ointments. J Pharm Sci. 1962;51:802–4.

    Article  CAS  PubMed  Google Scholar 

  3. McDonald MB, Protzko EE, Brunner LS, Morris TW, Haas W, Paterno MR et al. Efficacy and safety of besifloxacin ophthalmic suspension 0.6% compared with moxifloxacin ophthalmic solution 0.5% for treating bacterial conjunctivitis. Optometry. 2009;80:296–7.

    Google Scholar 

  4. Mundada AS, Shrikhande BK. Formulation and evaluation of ciprofloxacin hydrochloride soluble ocular drug insert. Curr Eye Res. 2008;33:469–75.

    Article  CAS  PubMed  Google Scholar 

  5. Sieg JW, Robinson JR. Vehicle effects on ocular drug bioavailability. I: Evaluation of fluorometholone. J Pharm Sci. 1975;64:931–6.

    Article  CAS  PubMed  Google Scholar 

  6. Nanjawade BK, Manvi FV, Manjappa AS. In situ-forming hydrogels for sustained ophthalmic drug delivery. J Contr Rel. 2007;122:119–34.

    Article  CAS  Google Scholar 

  7. Ganguly S, Dash AK. A novel in situ gel for sustained drug delivery and targeting. Int J Pharm. 2004;276:83–92.

    Article  CAS  PubMed  Google Scholar 

  8. Miller SC, Donovan MD. Effect of Poloxamer 407 gel on the miotic activity of pilocarpine nitrate in rabbits. Int J Pharm. 1982;12:147–52.

    Article  CAS  Google Scholar 

  9. Gurny R, Boye T, Ibrahim H. Ocular therapy with nanoparticulate systems for controlled drug delivery. J Contr Rel. 1985;2:353–61.

    Article  CAS  Google Scholar 

  10. Rozier A, Mazuel C, Grove J, Plazonnet B. Gelrite®:a novel, ion-activated, in situ-gelling polymer for ophthalmic vehicles effect on bioavailability of timolol. Int J Pharm. 1989;57:163–8.

    Article  CAS  Google Scholar 

  11. Lin HR, Sung KC. Carbopol/pluronic phase change solutions for ophthalmic drug delivery. J Contr Rel. 2000;69:379–88.

    Article  CAS  Google Scholar 

  12. Hui HW, Robinson JR. Ocular delivery of progesterone using a bioadhesive polymer. Int J Pharm. 1985;26:203–13.

    Article  CAS  Google Scholar 

  13. Sanzgiri YD, Maschi S, Crescenzi V, Calligaro L, Topp EM, Stella VJ. Gellan-based systems for ophthalmic sustained delivery of methyl prednisolone. J Contr Rel. 1993;26:195–201.

    Article  CAS  Google Scholar 

  14. Meseguer G, Gurny R, Buri P, Rozier A, Plazonnet B. Gamma scintigraphic study of precorneal drainage and assessment of miotic response in rabbits of various ophthalmic formulations containing pilocarpine. Int J Pharm. 1993;95:229–34.

    Article  CAS  Google Scholar 

  15. Carlfors J, Edsman K, Petersson R, Jornving K. Rheological evaluation of Gelrite in situ gels for ophthalmic use. Eur J Pharm Sci. 1998;6:113–9.

    Article  CAS  PubMed  Google Scholar 

  16. Cao YX, Zhang C, Shen WB, Cheng ZH, Yu LL, Ping Q. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Contr Rel. 2007;120:186–94.

    Article  CAS  Google Scholar 

  17. Miyazaki S, Suzuki S, Kawasaki N, Endo K, Takahashi A, Attwood D. In situ gelling xyloglucan formulations for sustained release ocular delivery of pilocarpine hydrochloride. Int J Pharm. 2001;229:29–36.

    Article  CAS  PubMed  Google Scholar 

  18. Agnihotri SA, Jawalkar SS, Aminabhavi TM. Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size, and drug release. Eur J Pharm Biopharm. 2006;63:249–61.

    Article  CAS  PubMed  Google Scholar 

  19. Balasubramaniam J, Kant S, Pandit JK. In vitro and in vivo evaluation of the Gelrite gellan gum-based ocular delivery system for indomethacin. Acta Pharm. 2003;53:251–61.

    CAS  PubMed  Google Scholar 

  20. Balakrishnana BJ, Mohantyb M, Umashankar PR, Jayakrishnana A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2005;26:6335–42.

    Article  Google Scholar 

  21. Liu Z, Li J, Nie S, Liu H, Ding P, Pan W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int J Pharm. 2006;315:12–7.

    Article  CAS  PubMed  Google Scholar 

  22. Joshi A, Ding S, Himmelstein. Reversible gelation compositions and methods of use. US Patent 5,252,318, 12 Oct 1993

  23. Lin HR, Sung KC, Vong WJ. In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromolecules. 2004;5:2358–65.

    Article  CAS  PubMed  Google Scholar 

  24. Pongjanyakul T, Puttipipatkhachorn S. Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm. 2007;331:61–71.

    Article  CAS  PubMed  Google Scholar 

  25. Wu CJ, Qi HY, Chen W, Huang C, Su C, Li W et al. Preparation and evaluation of a Carbopol/HPMC-based in situ gelling ophthalmic system for puerarin. Yakugaku Zasshi. 2007;127:183–91.

    Article  CAS  PubMed  Google Scholar 

  26. Yang HF, Zhang F. Research progress of matrine and its preparations. Qilu Pharm Affairs. 2008;27:551–3.

    Google Scholar 

  27. Chuang CY, Xiao JG, Chiou GCY. Ocular anti-inflammatory actions of matrine. J Ocul Pharmacol. 1987;3:129–34.

    Article  CAS  PubMed  Google Scholar 

  28. Li XT. The pharmacodynamics study of matrine gutta to cure bacterial keratitis and bacterial conjunctivitis. Master thesis, Jilin University; 2008. p. 19–30.

  29. Hou ZH, Tan DM, Xie YT, Lu MH, Xie JP, Liu GZ et al. Therapeutic effect of matrine in patients with chronic hepatitis B. Pract Prev Med. 2005;12:824–6.

    Google Scholar 

  30. Liu JJ. Effect of matrine on the treatment of patient with chronic hepatitis B. China Med Abstr. 2006;27:43–5.

    Google Scholar 

  31. Cohen S, Lobel E, Trevgoda A, Peled Y. A novel in situ forming ophthalmic drug delivery system from alginates undergoing gelation in the eye. J Contr Rel. 1997;44:201–8.

    Article  CAS  Google Scholar 

  32. Paulsson M, Hägerström H, Edsman K. Rheological studies of the gelation of deacetylated gellan gum (Gelrite) in physiological conditions. Eur J Pharm Sci. 1999;9:99–105.

    Article  CAS  PubMed  Google Scholar 

  33. Srividya B, Cardoza RM, Amin PD. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Contr Rel. 2001;73:205–11.

    Article  CAS  Google Scholar 

  34. Edsmana K, Carlforsa J, Harju K. Rheological evaluation and ocular contact time of some carbomer gels for ophthalmic use. Int J Pharm. 1996;137:233–41.

    Article  Google Scholar 

  35. Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances. J Pharmacol Exp Ther. 1944;82:377–90.

    CAS  Google Scholar 

  36. Colo GD, Zambito Y, Burgalassi S, Nardini I, Saettone MF. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Int J Pharm. 2004;273:37–44.

    Article  PubMed  Google Scholar 

  37. Deasy PB, Quigley KJ. Rheological evaluation of deacetylated gellan gum (Gelrite) for pharmaceutical use. Int J Pharm. 1991;73:117–23.

    Article  CAS  Google Scholar 

  38. Manjappa AS, Nanjwade BK, Manvi FV, Murthy RSR. Sustained ophthalmic in situ gel of ketorolac tromethamine rheology and in vivo studies. Drug Dev Res. 2009;70:417–24.

    Article  CAS  Google Scholar 

  39. Jansson PE, Lindberg B, Sandford PA. Structural studies of gellan gum an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr Res. 1983;124:135–9.

    Article  CAS  Google Scholar 

  40. Grasdalen H, Smidsroed O. Gelation of gellan gum. Carbohydr Polym. 1987;7:371–93.

    Article  CAS  Google Scholar 

  41. Moritaka H, Kimura S, Fukuba H. Rheological properties of matrix-particle gellan gum gel: effects of calcium chloride on the matrix. Food Hydrocolloids. 2003;17:653–60.

    Article  CAS  Google Scholar 

  42. Yuguchi Y, Urakawab H, Kajiwarab K. The effect of potassium salt on the structural characteristics of gellan gum gel. Food Hydrocolloids. 2002;16:191–5.

    Article  CAS  Google Scholar 

  43. Larsen B, Smidsrod O, Painter TJ, Haug A. Calculation of the nearest-neighbour frequencies in fragments of alginate from the yields of free monomers after partial hydrolysis. Acta Chem. 1970;24:726–8.

    CAS  Google Scholar 

  44. Haug A, Larsen B, Smidsrod O. A study of the constitution of alginic acid by partial hydrolysis. Acta Chem. 1966;20:183–90.

    CAS  Google Scholar 

  45. Funami T, Fang Y, Noda S, Ishihara S, Nakauma M, Draget KI et al. Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding. Food Hydrocolloids. 2009;23:1746–55.

    Article  CAS  Google Scholar 

  46. Morris VJ, Tsiami A, Brownsey GJ. Work hardening effects in gellan gum gels. J Carbohydrate Chem. 1995;14:667–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Liu, J., Zhang, X. et al. In Situ Gelling Gelrite/Alginate Formulations as Vehicles for Ophthalmic Drug Delivery. AAPS PharmSciTech 11, 610–620 (2010). https://doi.org/10.1208/s12249-010-9413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-010-9413-0

Key words

Navigation