Advertisement

The AAPS Journal

, 20:108 | Cite as

Nanoparticle-Based Delivery of CRISPR/Cas9 Genome-Editing Therapeutics

  • Brittany E. Givens
  • Youssef W. Naguib
  • Sean M. Geary
  • Eric J. Devor
  • Aliasger K. Salem
Review Article

Abstract

The recent progress in harnessing the efficient and precise method of DNA editing provided by CRISPR/Cas9 is one of the most promising major advances in the field of gene therapy. However, the development of safe and optimally efficient delivery systems for CRISPR/Cas9 elements capable of achieving specific targeting of gene therapy to the location of interest without off-target effects is a primary challenge for clinical therapeutics. Nanoparticles (NPs) provide a promising means to meet such challenges. In this review, we present the most recent advances in developing innovative NP-based delivery systems that efficiently deliver CRISPR/Cas9 constructs and maximize their effectiveness.

KEY WORDS

CRISPR/Cas9 gene editing gene delivery nanoparticle 

Notes

Funding Information

B. E. G. acknowledges fellowship support from the Alfred P. Sloan Foundation, the University of Iowa Graduate College, and the National GEM Consortium. E. J. Devor acknowledges support from the University of Iowa Department of Obstetrics and Gynecology Research Development Fund. A.K.S. acknowledges support from the National Cancer Institute at the National Institutes of Health (5P30CA086862) and the Lyle and Sharon Bighley Chair of Pharmaceutical Sciences.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327(5962):167–70.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. 2005;60(2):174–82.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.Google Scholar
  8. 8.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. elife. 2013;2:e00471.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Stephens CJ, Kashentseva E, Everett W, Kaliberova L, Curiel DT. Targeted in vivo knock-in of human alpha-1-antitrypsin cDNA using adenoviral delivery of CRISPR/Cas9. Gene Ther. 2018.Google Scholar
  10. 10.
    Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346(6213):1258096.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wang H, La Russa M, Qi LS. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 2016;85:227–64.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Li L, Hu S, Chen X. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials. 2018;171:207–18.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Yin H, Kauffman KJ, Anderson DG. Delivery technologies for genome editing. Nat Rev Drug Discov. 2017;16(6):387–99.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. 2011;9(6):467–77.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cyranoski D. First trial of CRISPR in people. Nature. 2016;535(7613):476–7.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30(2):226–32.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Aldayel AM, Naguib YW, O'Mary HL, Li X, Niu M, Ruwona TB, et al. Acid-sensitive sheddable PEGylated PLGA nanoparticles increase the delivery of TNF-alpha siRNA in chronic inflammation sites. Mol Ther Nucleic Acids. 2016;5(7):e340.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Naguib YW, Cui Z. Nanomedicine: the promise and challenges in cancer chemotherapy. Adv Exp Med Biol. 2014;811:207–33.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Rajasekaran D, Srivastava J, Ebeid K, Gredler R, Akiel M, Jariwala N, et al. Combination of nanoparticle-delivered siRNA for astrocyte elevated gene-1 (AEG-1) and all-trans retinoic acid (ATRA): an effective therapeutic strategy for hepatocellular carcinoma (HCC). Bioconjug Chem. 2015;26(8):1651–61.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Givens BE, Geary SM, Salem AK. Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy. 2018.Google Scholar
  22. 22.
    Ebeid K, Meng X, Thiel KW, Do AV, Geary SM, Morris AS, et al. Synthetically lethal nanoparticles for treatment of endometrial cancer. Nat Nanotechnol. 2018;13(1):72–81.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Wongrakpanich A, Morris AS, Geary SM, Joiner MA, Salem AK. Surface-modified particles loaded with CaMKII inhibitor protect cardiac cells against mitochondrial injury. Int J Pharm. 2017;520(1–2):275–83.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Morris AS, Sebag SC, Paschke JD, Wongrakpanich A, Ebeid K, Anderson ME, et al. Cationic CaMKII inhibiting nanoparticles prevent allergic asthma. Mol Pharm. 2017;14(6):2166–75.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Joshi VB, Adamcakova-Dodd A, Jing X, Wongrakpanich A, Gibson-Corley KN, Thorne PS, et al. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy. AAPS J. 2014;16(5):975–85.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine delivery systems: size matters. AAPS J. 2013;15(1):85–94.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater. 2003;2(10):668–71.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang HX, Li M, Lee CM, Chakraborty S, Kim HW, Bao G, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: challenges and opportunities for nonviral delivery. Chem Rev. 2017;117(15):9874–906.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang HX, Song Z, Lao YH, Xu X, Gong J, Cheng D, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci U S A. 2018.Google Scholar
  30. 30.
    Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Glass Z, Lee M, Li Y, Xu Q. Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol. 2018;36(2):173–85.PubMedGoogle Scholar
  32. 32.
    Lostale-Seijo I, Louzao I, Juanes M, Montenegro J. Peptide/Cas9 nanostructures for ribonucleoprotein cell membrane transport and gene edition. Chem Sci. 2017;8(12):7923–31.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Mekler V, Minakhin L, Semenova E, Kuznedelov K, Severinov K. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3′-terminal segment of guide RNA. Nucleic Acids Res. 2016;44(6):2837–45.PubMedPubMedCentralGoogle Scholar
  34. 34.
    DiCarlo JE, Deeconda A, Tsang SH. Viral vectors, engineered cells and the CRISPR revolution. Adv Exp Med Biol. 2017;1016:3–27.PubMedGoogle Scholar
  35. 35.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Hess GT, Tycko J, Yao D, Bassik MC. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell. 2017;68(1):26–43.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang M, Glass ZA, Xu Q. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Ther. 2017;24(3):144–50.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ha JS, Lee JS, Jeong J, Kim H, Byun J, Kim SA, et al. Poly-sgRNA/siRNA ribonucleoprotein nanoparticles for targeted gene disruption. J Control Release. 2017;250:27–35.PubMedGoogle Scholar
  39. 39.
    Mout R, Ray M, Lee YW, Scaletti F, Rotello VM. In vivo delivery of CRISPR/Cas9 for therapeutic gene editing: progress and challenges. Bioconjug Chem. 2017;28(4):880–4.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Khalil IA, Kogure K, Futaki S, Hama S, Akita H, Ueno M, et al. Octaarginine-modified multifunctional envelope-type nanoparticles for gene delivery. Gene Ther. 2007;14(8):682–9.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Xu S, Olenyuk BZ, Okamoto CT, Hamm-Alvarez SF. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Deliv Rev. 2013;65(1):121–38.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657–63.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Vercauteren D, Rejman J, Martens TF, Demeester J, De Smedt SC, Braeckmans K. On the cellular processing of non-viral nanomedicines for nucleic acid delivery: mechanisms and methods. J Control Release. 2012;161(2):566–81.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Sonawane ND, Szoka FC, Jr., Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. J Biol Chem 2003;278(45):44826–44831.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Richard I, Thibault M, De Crescenzo G, Buschmann MD, Lavertu M. Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules. 2013;14(6):1732–40.PubMedGoogle Scholar
  46. 46.
    Cardarelli F, Pozzi D, Bifone A, Marchini C, Caracciolo G. Cholesterol-dependent macropinocytosis and endosomal escape control the transfection efficiency of lipoplexes in CHO living cells. Mol Pharm. 2012;9(2):334–40.PubMedGoogle Scholar
  47. 47.
    Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell. 1984;39(3 Pt 2):499–509.PubMedGoogle Scholar
  48. 48.
    Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH. Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. 2007;282(8):5101–5.PubMedGoogle Scholar
  49. 49.
    Sun Y, Xian L, Xing H, Yu J, Yang Z, Yang T, et al. Factors influencing the nuclear targeting ability of nuclear localization signals. J Drug Target. 2016;24(10):927–33.PubMedGoogle Scholar
  50. 50.
    Hu Q, Wang J, Shen J, Liu M, Jin X, Tang G, et al. Intracellular pathways and nuclear localization signal peptide-mediated gene transfection by cationic polymeric nanovectors. Biomaterials. 2012;33(4):1135–45.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Lee J, Jung J, Kim YJ, Lee E, Choi JS. Gene delivery of PAMAM dendrimer conjugated with the nuclear localization signal peptide originated from fibroblast growth factor 3. Int J Pharm. 2014;459(1–2):10–8.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Park E, Cho HB, Takimoto K. Effective gene delivery into adipose-derived stem cells: transfection of cells in suspension with the use of a nuclear localization signal peptide-conjugated polyethylenimine. Cytotherapy. 2015;17(5):536–42.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc. 2012;134(13):5722–5.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Malhotra M, Tomaro-Duchesneau C, Prakash S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials. 2013;34(4):1270–80.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Nitin N, LaConte L, Rhee WJ, Bao G. Tat peptide is capable of importing large nanoparticles across nuclear membrane in digitonin permeabilized cells. Ann Biomed Eng. 2009;37(10):2018–27.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Ammosova T, Jerebtsova M, Beullens M, Lesage B, Jackson A, Kashanchi F, et al. Nuclear targeting of protein phosphatase-1 by HIV-1 Tat protein. J Biol Chem. 2005;280(43):36364–71.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Sandgren S, Cheng F, Belting M. Nuclear targeting of macromolecular polyanions by an HIV-Tat derived peptide. Role for cell-surface proteoglycans. J Biol Chem. 2002;277(41):38877–83.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Liu BY, He XY, Xu C, Xu L, Ai SL, Cheng SX, et al. A dual-targeting delivery system for effective genome editing and in situ detecting related protein expression in edited cells. Biomacromolecules. 2018.Google Scholar
  59. 59.
    Asai T, Tsuzuku T, Takahashi S, Okamoto A, Dewa T, Nango M, et al. Cell-penetrating peptide-conjugated lipid nanoparticles for siRNA delivery. Biochem Biophys Res Commun 2014;444(4):599–604.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Nelson CE, Gersbach CA. Engineering delivery vehicles for genome editing. Annu Rev Chem Biomol Eng. 2016;7:637–62.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Cardarelli F, Digiacomo L, Marchini C, Amici A, Salomone F, Fiume G, et al. The intracellular trafficking mechanism of Lipofectamine-based transfection reagents and its implication for gene delivery. Sci Rep. 2016;6:25879.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Yu X, Liang X, Xie H, Kumar S, Ravinder N, Potter J, et al. Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol Lett. 2016;38(6):919–29.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep. 2013;3:2510.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;208:44–53.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Daubendiek SL, Kool ET. Generation of catalytic RNAs by rolling transcription of synthetic DNA nanocircles. Nat Biotechnol. 1997;15(3):273–7.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Daubendiek SL, Ryan K, Kool ET. Rolling-circle RNA synthesis: circular oligonucleotides as efficient substrates for T7 RNA polymerase. J Am Chem Soc. 1995;117(29):7818–9.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Kim H, Park Y, Lee JB. Self-assembled messenger RNA nanoparticles (mRNA-NPs) for efficient gene expression. Sci Rep. 2015;5:12737.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Lee JB, Hong J, Bonner DK, Poon Z, Hammond PT. Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater. 2012;11(4):316–22.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Sharma B, Crist RM, Adiseshaiah PP. Nanotechnology as a delivery tool for precision cancer therapies. AAPS J. 2017.Google Scholar
  71. 71.
    del Pozo-Rodriguez A, Delgado D, Solinis MA, Pedraz JL, Echevarria E, Rodriguez JM, et al. Solid lipid nanoparticles as potential tools for gene therapy: in vivo protein expression after intravenous administration. Int J Pharm. 2010;385(1–2):157–62.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Radaic A, de Paula E, de Jesus MB. Factorial design and development of solid lipid nanoparticles (SLN) for gene delivery. J Nanosci Nanotechnol. 2015;15(2):1793–800.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sune-Pou M, Prieto-Sanchez S, El Yousfi Y, Boyero-Corral S, Nardi-Ricart A, Nofrerias-Roig I, et al. Cholesteryl oleate-loaded cationic solid lipid nanoparticles as carriers for efficient gene-silencing therapy. Int J Nanomedicine. 2018;13:3223–33.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Wang P, Zhang L, Xie Y, Wang N, Tang R, Zheng W, et al. Genome editing for cancer therapy: delivery of Cas9 protein/sgRNA plasmid via a gold nanocluster/lipid core-shell nanocarrier. Advanced Science 2017.Google Scholar
  76. 76.
    Zheng T, Bott S, Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces. 2016;8(33):21585–94.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol. 2017.Google Scholar
  78. 78.
    Dong Y, Love KT, Dorkin JR, Sirirungruang S, Zhang Y, Chen D, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci U S A. 2014;111(11):3955–60.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P, et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. 2016;113(11):2868–73.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Li Y, Yang T, Yu Y, Shi N, Yang L, Glass Z, et al. Combinatorial library of chalcogen-containing lipidoids for intracellular delivery of genome-editing proteins. Biomaterials 2018.Google Scholar
  81. 81.
    Zhen S, Takahashi Y, Narita S, Yang YC, Li X. Targeted delivery of CRISPR/Cas9 to prostate cancer by modified gRNA using a flexible aptamer-cationic liposome. Oncotarget. 2017;8(6):9375–87.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018;22(9):2227–35.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem Int Ed Engl. 2017;56(4):1059–63.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, et al. Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano. 2017;11(3):2452–8.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Alsaiari SK, Patil S, Alyami M, Alamoudi KO, Aleisa FA, Merzaban JS, et al. Endosomal escape and delivery of CRISPR/Cas9 genome editing machinery enabled by nanoscale zeolitic imidazolate framework. J Am Chem Soc. 2018;140(1):143–6.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yue H, Zhou X, Cheng M, Xing D. Graphene oxide-mediated Cas9/sgRNA delivery for efficient genome editing. Nanoscale. 2018;10(3):1063–71.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Sun W, Ji W, Hall JM, Hu Q, Wang C, Beisel CL, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed Engl. 2015;54(41):12029–33.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Kretzmann JA, Ho D, Evans CW, Plani-Lam JHC, Garcia-Bloj B, Mohamed AE, et al. Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA. Chem Sci. 2017;8(4):2923–30.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Akinc A, Zumbuehl A, Goldberg M, Leshchiner ES, Busini V, Hossain N, et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. 2008;26(5):561–9.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew Chem Int Ed Engl. 2014;53(11):2893–8.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Li B, Dong Y. Preparation and optimization of lipid-like nanoparticles for mRNA delivery. Methods Mol Biol. 1632;2017:207–17.Google Scholar
  92. 92.
    Li B, Luo X, Deng B, Giancola JB, McComb DW, Schmittgen TD, et al. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci Rep 2016;6:22137.Google Scholar
  93. 93.
    Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci U S A. 2010;107(5):1864–9.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Whitehead KA, Dorkin JR, Vegas AJ, Chang PH, Veiseh O, Matthews J, et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat Commun. 2014;5:4277.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Pombo Garcia K, Zarschler K, Barbaro L, Barreto JA, O'Malley W, Spiccia L, et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small. 2014;10(13):2516–29.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Panayiotou E, Papacharalambous R, Antoniou A, Christophides G, Papageorgiou L, Fella E, et al. Genetic background modifies amyloidosis in a mouse model of ATTR neuropathy. Biochem Biophys Rep. 2016;8:48–54.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976;263(5580):797–800.PubMedPubMedCentralGoogle Scholar
  98. 98.
    Leelakanok N, Geary SM, Salem AK. Antitumor efficacy and toxicity of 5-fluorouracil-loaded poly(lactide co-glycolide) pellets. J Pharm Sci. 2018;107(2):690–7.PubMedPubMedCentralGoogle Scholar
  99. 99.
    Coleman MC, Goetz JE, Brouillette MJ, Seol D, Willey MC, Petersen EB, et al. Targeting mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis. Sci Transl Med. 2018;10(427).PubMedPubMedCentralGoogle Scholar
  100. 100.
    Wafa EI, Geary SM, Goodman JT, Narasimhan B, Salem AK. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Acta Biomater. 2017;50:417–27.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Khorsand B, Elangovan S, Hong L, Dewerth A, Kormann MS, Salem AK. A comparative study of the bone regenerative effect of chemically modified RNA encoding BMP-2 or BMP-9. AAPS J. 2017;19(2):438–46.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Salem AK. Nanoparticles in vaccine delivery. AAPS J. 2015;17(2):289–91.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Makkouk A, Joshi VB, Wongrakpanich A, Lemke CD, Gross BP, Salem AK, et al. Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer. AAPS J. 2015;17(1):184–93.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Geary SM, Hu Q, Joshi VB, Bowden NB, Salem AK. Diaminosulfide based polymer microparticles as cancer vaccine delivery systems. J Control Release. 2015;220(Pt B):682–90.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Wongrakpanich A, Adamcakova-Dodd A, Xie W, Joshi VB, Mapuskar KA, Geary SM, et al. The absence of CpG in plasmid DNA-chitosan polyplexes enhances transfection efficiencies and reduces inflammatory responses in murine lungs. Mol Pharm. 2014;11(3):1022–31.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Gross BP, Wongrakpanich A, Francis MB, Salem AK, Norian LA. A therapeutic microparticle-based tumor lysate vaccine reduces spontaneous metastases in murine breast cancer. AAPS J. 2014;16(6):1194–203.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Joshi VB, Geary SM, Carrillo-Conde BR, Narasimhan B, Salem AK. Characterizing the antitumor response in mice treated with antigen-loaded polyanhydride microparticles. Acta Biomater. 2013;9(3):5583–9.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Hong L, Wei N, Joshi V, Yu Y, Kim N, Krishnamachari Y, et al. Effects of glucocorticoid receptor small interfering RNA delivered using poly lactic-co-glycolic acid microparticles on proliferation and differentiation capabilities of human mesenchymal stromal cells. Tissue Eng Part A. 2012;18(7–8):775–84.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Krishnamachari Y, Geary SM, Lemke CD, Salem AK. Nanoparticle delivery systems in cancer vaccines. Pharm Res. 2011;28(2):215–36.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Intra J, Salem AK. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells. J Drug Target. 2011;19(6):393–408.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Intra J, Salem AK. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery. J Pharm Sci. 2010;99(1):368–84.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Zhang XQ, Intra J, Salem AK. Comparative study of poly (lactic-co-glycolic acid)-poly ethyleneimine-plasmid DNA microparticles prepared using double emulsion methods. J Microencapsul. 2008;25(1):1–12.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Abbas AO, Donovan MD, Salem AK. Formulating poly(lactide-co-glycolide) particles for plasmid DNA delivery. J Pharm Sci. 2008;97(7):2448–61.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Intra J, Salem AK. Characterization of the transgene expression generated by branched and linear polyethylenimine-plasmid DNA nanoparticles in vitro and after intraperitoneal injection in vivo. J Control Release. 2008;130(2):129–38.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Zhang XQ, Intra J, Salem AK. Conjugation of polyamidoamine dendrimers on biodegradable microparticles for nonviral gene delivery. Bioconjug Chem. 2007;18(6):2068–76.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Wongrakpanich A, Wu M, Salem AK. Correlating intracellular nonviral polyplex localization with transfection efficiency using high-content screening. Biotechnol Prog. 2015;31(6):1685–92.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Atluri K, Seabold D, Hong L, Elangovan S, Salem AK. Nanoplex-mediated codelivery of fibroblast growth factor and bone morphogenetic protein genes promotes osteogenesis in human adipocyte-derived mesenchymal stem cells. Mol Pharm. 2015;12(8):3032–42.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Ganas C, Weiss A, Nazarenus M, Rosler S, Kissel T, Rivera Gil P, et al. Biodegradable capsules as non-viral vectors for in vitro delivery of PEI/siRNA polyplexes for efficient gene silencing. J Control Release. 2014;196:132–8.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther. 2015;26(7):452–62.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Francis SM, Taylor CA, Tang T, Liu Z, Zheng Q, Dondero R, et al. SNS01-T modulation of eIF5A inhibits B-cell cancer progression and synergizes with bortezomib and lenalidomide. Mol Ther. 2014;22(9):1643–52.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Suenaga T, Kohyama M, Hirayasu K, Arase H. Engineering large viral DNA genomes using the CRISPR-Cas9 system. Microbiol Immunol. 2014;58(9):513–22.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541–55.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4(7):581–93.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Campeau P, Chapdelaine P, Seigneurin-Venin S, Massie B, Tremblay JP. Transfection of large plasmids in primary human myoblasts. Gene Ther. 2001;8(18):1387–94.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Wang M, Liu H, Li L, Cheng Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat Commun. 2014;5:3053.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Beerli RR, Segal DJ, Dreier B, Barbas CF 3rd. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc Natl Acad Sci U S A. 1998;95(25):14628–33.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Worthington KS, Green BJ, Rethwisch M, Wiley LA, Tucker BA, Guymon CA, et al. Neuronal differentiation of induced pluripotent stem cells on surfactant templated chitosan hydrogels. Biomacromolecules. 2016;17(5):1684–95.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Mahiny AJ, Dewerth A, Mays LE, Alkhaled M, Mothes B, Malaeksefat E, et al. In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol. 2015;33(6):584–6.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Wilder MA. Surfactant protein B deficiency in infants with respiratory failure. J Perinat Neonat Nurs. 2004;18(1):61–7.Google Scholar
  131. 131.
    Liu Y, Wang T, He F, Liu Q, Zhang D, Xiang S, et al. An efficient calcium phosphate nanoparticle-based nonviral vector for gene delivery. Int J Nanomedicine. 2011;6:721–7.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Ge X, Zhang Q, Cai Y, Duan S, Chen S, Lv N, et al. PEG-PCL-DEX polymersome-protamine vector as an efficient gene delivery system via PEG-guided self-assembly. Nanomedicine (Lond). 2014;9(8):1193–207.Google Scholar
  133. 133.
    Puras G, Martinez-Navarrete G, Mashal M, Zarate J, Agirre M, Ojeda E, et al. Protamine/DNA/Niosome ternary nonviral vectors for gene delivery to the retina: the role of protamine. Mol Pharm. 2015;12(10):3658–71.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Yang W, Cheng Y, Xu T, Wang X, Wen LP. Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem. 2009;44(2):862–8.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Vineberg JG, Zuniga ES, Kamath A, Chen YJ, Seitz JD, Ojima I. Design, synthesis, and biological evaluations of tumor-targeting dual-warhead conjugates for a taxoid-camptothecin combination chemotherapy. J Med Chem. 2014;57(13):5777–91.PubMedPubMedCentralGoogle Scholar
  136. 136.
    Koutsioumpa M, Papadimitriou E. Cell surface nucleolin as a target for anti-cancer therapies. Recent Pat Anticancer Drug Discov. 2014;9(2):137–52.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sinclair JF, O'Brien AD. Cell surface-localized nucleolin is a eukaryotic receptor for the adhesin intimin-gamma of enterohemorrhagic Escherichia coli O157:H7. J Biol Chem. 2002;277(4):2876–85.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Zhou Y, Han C, Li D, Yu Z, Li F, Li F, et al. Cyclin-dependent kinase 11(p110) (CDK11(p110)) is crucial for human breast cancer cell proliferation and growth. Sci Rep. 2015;5:10433.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Liu X, Gao Y, Shen J, Yang W, Choy E, Mankin H, et al. Cyclin-dependent kinase 11 (CDK11) is required for ovarian cancer cell growth in vitro and in vivo, and its inhibition causes apoptosis and sensitizes cells to paclitaxel. Mol Cancer Ther. 2016;15(7):1691–701.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Feng Y, Sassi S, Shen JK, Yang X, Gao Y, Osaka E, et al. Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system. J Orthop Res. 2015;33(2):199–207.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Hoyer J, Neundorf I. Peptide vectors for the nonviral delivery of nucleic acids. Acc Chem Res. 2012;45(7):1048–56.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep. 2016;4(5):528–34.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Radis-Baptista G, Campelo IS, Morlighem JRL, Melo LM, Freitas VJF. Cell-penetrating peptides (CPPs): from delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol. 2017;252:15–26.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Li H, Tsui TY, Ma W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int J Mol Sci. 2015;16(8):19518–36.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020–7.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Yamashita H, Kato T, Oba M, Misawa T, Hattori T, Ohoka N, et al. Development of a cell-penetrating peptide that exhibits responsive changes in its secondary structure in the cellular environment. Sci Rep. 2016;6:33003.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Jeong EJ, Choi M, Lee J, Rhim T, Lee KY. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment. Nanoscale. 2015;7(47):20095–104.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Chaterji S, Ahn EH, Kim DH. CRISPR genome engineering for human pluripotent stem cell research. Theranostics. 2017;7(18):4445–69.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Gabrielson NP, Lu H, Yin L, Li D, Wang F, Cheng J. Reactive and bioactive cationic alpha-helical polypeptide template for nonviral gene delivery. Angew Chem Int Ed Engl. 2012;51(5):1143–7.PubMedPubMedCentralGoogle Scholar
  150. 150.
    He H, Zheng N, Song Z, Kim KH, Yao C, Zhang R, et al. Suppression of hepatic inflammation via systemic siRNA delivery by membrane-disruptive and endosomolytic helical polypeptide hybrid nanoparticles. ACS Nano. 2016;10(2):1859–70.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Lu H, Wang J, Bai Y, Lang JW, Liu S, Lin Y, et al. Ionic polypeptides with unusual helical stability. Nat Commun. 2011;2:206.PubMedPubMedCentralGoogle Scholar
  152. 152.
    Zheng N, Song Z, Yang J, Liu Y, Li F, Cheng J, et al. Manipulating the membrane penetration mechanism of helical polypeptides via aromatic modification for efficient gene delivery. Acta Biomater. 2017;58:146–57.PubMedPubMedCentralGoogle Scholar
  153. 153.
    Vert M, Doi Y, Hellwich KH, Hess M, Hodge P, Kubisa P, et al. Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl Chem. 2012;84(2):377–408.Google Scholar
  154. 154.
    Yang J, Bahreman A, Daudey G, Bussmann J, Olsthoorn RC, Kros A. Drug delivery via cell membrane fusion using lipopeptide modified liposomes. ACS Cent Sci. 2016;2(9):621–30.PubMedPubMedCentralGoogle Scholar
  155. 155.
    Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1:889–901.PubMedPubMedCentralGoogle Scholar
  156. 156.
    Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One. 2012;7(4):e34833.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Phase I Study of IV DOTAP: cholesterol-Fus1 in non-small-cell lung cancer [Available from: https://ClinicalTrials.gov/show/NCT00059605.
  158. 158.
    Study of PNT2258 for Treatment of Relapsed or Refractory Non-Hodgkin's Lymphoma [Available from: https://ClinicalTrials.gov/show/NCT01733238.
  159. 159.
    A Study of PNT2258 in Patients With Advanced Solid Tumors [Available from: https://ClinicalTrials.gov/show/NCT01191775.
  160. 160.
    Harb WA, Lakhani N, Logsdon A, Steigelman M, Smith-Green H, Gaylor S, et al. The BCL2 targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 is active in patients with relapsed or refractory non-Hodgkin’s lymphoma. Blood. 2014;124(21):1716.Google Scholar
  161. 161.
    Tolcher AW, Rodrigueza WV, Rasco DW, Patnaik A, Papadopoulos KP, Amaya A, et al. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;73(2):363–71.PubMedGoogle Scholar
  162. 162.
    Safety and Tolerability Study of SNS01-T in Relapsed or Refractory B Cell Malignancies (Multiple Myeloma, B Cell Lymphoma, or Plasma Cell Leukemia (PCL) [Available from: https://ClinicalTrials.gov/show/NCT01435720.
  163. 163.
    Siegel DS, McDonald A, Novitzky N, Bensinger W, Craig M, van Rhee F, et al. Mature results of a phase 1-2 open-label, dose-escalation study of intravenous SNS01-T in patients (pts) with relapsed or refractory B-cell malignancies. Blood. 2014;124(21):4464.Google Scholar
  164. 164.
    Pilot Study of BC-819/PEI and BCG in Patients With Superficial Transitional Cell Bladder Carcinoma [Available from: https://ClinicalTrials.gov/show/NCT01878188.
  165. 165.
    Phase 1/2a Study of DTA-H19 in Advanced Stage Ovarian Cancer [Available from: https://ClinicalTrials.gov/show/NCT00826150.
  166. 166.
    Lavie O, Edelman D, Levy T, Fishman A, Hubert A, Segev Y, et al. A phase 1/2a, dose-escalation, safety, pharmacokinetic, and preliminary efficacy study of intraperitoneal administration of BC-819 (H19-DTA) in subjects with recurrent ovarian/peritoneal cancer. Arch Gynecol Obstet. 2017;295(3):751–61.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Sidi AA, Ohana P, Benjamin S, Shalev M, Ransom JH, Lamm D, et al. Phase I/II marker lesion study of intravesical BC-819 DNA plasmid in H19 over expressing superficial bladder cancer refractory to bacillus Calmette-Guerin. J Urol. 2008;180(6):2379–83.PubMedPubMedCentralGoogle Scholar
  168. 168.
    Study With Atu027 in Patients With Advanced Solid Cancer [Available from: https://ClinicalTrials.gov/show/NCT00938574.
  169. 169.
    Atu027 Plus Gemcitabine in Advanced or Metastatic Pancreatic Cancer (Atu027-I-02) [Available from: https://ClinicalTrials.gov/show/NCT01808638.
  170. 170.
    Aleku M, Schulz P, Keil O, Santel A, Schaeper U, Dieckhoff B, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008;68(23):9788–98.PubMedGoogle Scholar
  171. 171.
    Schultheis B, Strumberg D, Kuhlmann J, Wolf M, Link K, Seufferlein T, et al. A phase Ib/IIa study of combination therapy with gemcitabine and Atu027 in patients with locally advanced or metastatic pancreatic adenocarcinoma. J Clin Oncol. 2016;34(4_suppl):385.Google Scholar
  172. 172.
    Schultheis B, Strumberg D, Santel A, Vank C, Gebhardt F, Keil O, et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol. 2014;32(36):4141–8.PubMedGoogle Scholar
  173. 173.
    Silence T. Pancreatic cancer study Atu027-I-02 Interim analysis 2015 [Available from: https://www.silence-therapeutics.com/media/1263/atu027-phase-2a-pancreatic-cancer-interim-analysis.pdf.
  174. 174.
    Phase I, Multicenter, dose escalation study of DCR-MYC in patients with solid tumors, multiple myeloma, or lymphoma [Available from: https://ClinicalTrials.gov/show/NCT02110563.
  175. 175.
    Tolcher AW, Papadopoulos KP, Patnaik A, Rasco DW, Martinez D, Wood DL, et al. Safety and activity of DCR-MYC, a first-in-class Dicer-substrate small interfering RNA (DsiRNA) targeting MYC, in a phase I study in patients with advanced solid tumors. J Clin Oncol. 2015;33(15_suppl):11006.Google Scholar
  176. 176.
    Safety Study of a Cell Penetrating Peptide (p28) to Treat Solid Tumors That Resist Standard Methods of Treatment [Available from: https://ClinicalTrials.gov/show/NCT00914914.
  177. 177.
    p28 in Treating Younger Patients With Recurrent or Progressive Central Nervous System Tumors [Available from: https://ClinicalTrials.gov/show/NCT01975116.
  178. 178.
    Lulla RR, Goldman S, Beattie C, Yamada T, Pollack I, Fisher PG, et al. Phase 1 trial of p28 (NSC745104), a non-HDM2 mediated peptide inhibitor of p53 ubiquitination in children with recurrent or progressive CNS tumors: a final report from the Pediatric Brain Tumor Consortium. J Clin Oncol. 2015;33(15_suppl):10059.Google Scholar
  179. 179.
    Warso MA, Richards JM, Mehta D, Christov K, Schaeffer C, Rae Bressler L, et al. A first-in-class, first-in-human, phase I trial of p28, a non-HDM2-mediated peptide inhibitor of p53 ubiquitination in patients with advanced solid tumours. Br J Cancer. 2013;108(5):1061–70.PubMedPubMedCentralGoogle Scholar
  180. 180.
    Senevirathne SA, Washington KE, Biewer MC, Stefan MC. PEG based anti-cancer drug conjugated prodrug micelles for the delivery of anti-cancer agents. J Mater Chem B. 2016;4(3):360–70.Google Scholar
  181. 181.
    Li W, Zhan P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38(3):421–44.Google Scholar
  182. 182.
    C-f X, Wang J. Delivery systems for siRNA drug development in cancer therapy. Asian J Pharm Sci. 2015;10(1):1–12.Google Scholar
  183. 183.
    Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1(1):10–29.PubMedPubMedCentralGoogle Scholar
  184. 184.
    Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov. 2015;14(12):843–56.PubMedPubMedCentralGoogle Scholar
  185. 185.
    Tatiparti K, Sau S, Kashaw SK, Iyer AK. siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel). 2017;7(4).Google Scholar
  186. 186.
    Stern JM, Kibanov Solomonov VV, Sazykina E, Schwartz JA, Gad SC, Goodrich GP. Initial evaluation of the safety of nanoshell-directed photothermal therapy in the treatment of prostate disease. Int J Toxicol. 2016;35(1):38–46.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol Sci. 2017;38(4):406–24.Google Scholar
  188. 188.
    Charlesworth CT, Deshpande PS, Dever DP, Dejene B, Gomez-Ospina N, Mantri S, et al. Identification of pre-existing adaptive immunity to Cas9 proteins in humans. bioRxiv. 2018.Google Scholar
  189. 189.
    Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36(8):765–71.PubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Brittany E. Givens
    • 1
    • 2
  • Youssef W. Naguib
    • 1
    • 3
  • Sean M. Geary
    • 1
  • Eric J. Devor
    • 4
  • Aliasger K. Salem
    • 1
    • 2
  1. 1.Division of Pharmaceutics and Translational Therapeutics, College of PharmacyUniversity of IowaIowa CityUSA
  2. 2.Department of Chemical and Biochemical Engineering, College of EngineeringUniversity of IowaIowa CityUSA
  3. 3.Department of Pharmaceutics, Faculty of PharmacyMinia UniversityMiniaEgypt
  4. 4.Department of Obstetrics and Gynecology, Carver College of MedicineUniversity of IowaIowa CityUSA

Personalised recommendations