Skip to main content

Advertisement

Log in

Simultaneous Pharmacokinetic Model for Rolofylline and both M1-trans and M1-cis Metabolites

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Rolofylline is a potent, selective adenosine A1 receptor antagonist that was under development for the treatment of patients with acute congestive heart failure and renal impairment. Rolofylline is metabolized primarily to the pharmacologically active M1-trans and M1-cis metabolites (metabolites) by cytochrome P450 (CYP) 3A4. The aim of this investigation was to provide a pharmacokinetic (PK) model for rolofylline and metabolites following intravenous administration to healthy volunteers. Data included for this investigation came from a randomized, double-blind, dose-escalation trial in four groups of healthy volunteers (N = 36) where single doses of rolofylline, spanning 1 to 60 mg ,were infused over 1–2 h. The rolofylline and metabolite data were analyzed simultaneously using NONMEM. The simultaneous PK model comprised, in part, a two-compartment linear PK model for rolofylline, with estimates of clearance and volume of distribution at steady-state of 24.4 L/h and 239 L, respectively. In addition, the final PK model contained provisions for both conversion of rolofylline to metabolites and stereochemical conversion of M1-trans to M1-cis. Accordingly, the final model captured known aspects of rolofylline metabolism and was capable of simultaneously describing the PK of rolofylline and metabolites in healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Slawsky MT, Givertz MM. Rolofylline: a selective adenosine 1 receptor antagonist for the treatment of heart failure. Expert Opin Pharmacother. 2009;10(2):311–22.

    Article  PubMed  CAS  Google Scholar 

  2. Briggs JP, Schnermann J. The tubuloglomerular feedback mechanism—functional and biochemical aspects. Annu Rev Physiol. 1987;49:251–73.

    Article  PubMed  CAS  Google Scholar 

  3. Welch WJ. Adenosine A(1) receptor antagonists in the kidney: effects in fluid-retaining disorders. Curr Opin Pharmacol. 2002;2:165–70.

    Article  PubMed  CAS  Google Scholar 

  4. Cotter G, Dittrich HC, Weatherley BD, Bloomfield DM, O’Connor CM, Metra M, et al. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A(1) receptor antagonist rolofylline in patients with acute heart failure and renal impairment. J Card Fail. 2008;14:631–40.

    Article  PubMed  CAS  Google Scholar 

  5. Dittrich HC, Gupta DK, Hack TC, Dowling T, Callahan J, Thomson S. The effect of KW-3902, an adenosine A(1) receptor antagonist, on renal function and renal plasma flow in ambulatory patients with heart failure and renal impairment. J Card Fail. 2007;13:609–17.

    Article  PubMed  CAS  Google Scholar 

  6. Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC. The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol. 2007;50:1551–60.

    Article  PubMed  CAS  Google Scholar 

  7. Weatherley BD, Cotter G, Dittrich HC, Delucca P, Mansoor GA, Bloomfield DM, et al. Design and rationale of the PROTECT study: a placebo-controlled randomized study of the selective A1 adenosine receptor antagonist rolofylline for patients hospitalized with acute decompensated heart failure and volume overload to assess treatment effect on congestion and renal function. J Card Fail. 2010;16:25–35.

    Article  PubMed  CAS  Google Scholar 

  8. Stroh M, Dishy V, Radziszewski W, Hwang E, Lazarus-Shipitofsky N, Dittrich H, et al. The effects of multiple doses of rolofylline on the single-dose pharmacokinetics of midazolam in healthy subjects. Am J Ther. 2010;17:53–60.

    Article  PubMed  Google Scholar 

  9. Radziszewski W, Lai E, Shipitofsky NL, Stroh M, Dishy V, Han LL, et al. A single supratherapeutic dose of rolofylline does not prolong the QTcF interval in healthy volunteers. Am J Ther. 2010;17:8–16.

    Article  PubMed  Google Scholar 

  10. Duffull SB, Chabaud S, Nony P, Laveille C, Girard P, Aarons L. A pharmacokinetic simulation model for ivabradine in healthy volunteers. Eur J Pharm Sci. 2000;10:285–94.

    Article  PubMed  CAS  Google Scholar 

  11. Klein CE, Gupta E, Reid JM, Atherton PJ, Sloan JA, Pitot HC, et al. Population pharmacokinetic model for irinotecan and two of its metabolites, SN-38 and SN-38 glucuronide. Clin Pharmacol Ther. 2002;72:638–47.

    Article  PubMed  CAS  Google Scholar 

  12. Chis OT, Banga JR, Balsa-Canto E. Structural identifiability of systems biology models: a critical comparison of methods. PLoS One. 2011;6:e27755.

    Article  PubMed  CAS  Google Scholar 

  13. Yates JW, Jones RD, Walker M, Cheung SY. Structural identifiability and indistinguishability of compartmental models. Expert Opin Drug Metab Toxicol. 2009;5:295–302.

    Article  PubMed  Google Scholar 

  14. Bellu G, Saccomani MP, Audoly S, D’Angio L. DAISY: a new software tool to test global identifiability of biological and physiological systems. Comput Methods Programs Biomed. 2007;88:52–61.

    Article  PubMed  Google Scholar 

  15. Roper RT, Pia SM, Vicini P. Cellular signaling identifiability analysis: a case study. J Theor Biol. 2010;264:528–37.

    Article  PubMed  CAS  Google Scholar 

  16. Saccomani MP, Audoly S, Bellu G, D’Angio L. Examples of testing global identifiability of biological and biomedical models with the DAISY software. Comput Biol Med. 2010;40:402–7.

    Article  PubMed  Google Scholar 

  17. Saccomani MP. An effective automatic procedure for testing parameter identifiability of HIV/AIDS models. Bull Math Biol. 2011;73:1734–53.

    Article  PubMed  Google Scholar 

  18. Ogungbenro K, Aarons L. Structural identifiability analysis of pharmacokinetic models using DAISY: semi-mechanistic gastric emptying models for 13C-octanoic acid. J Pharmacokinet Pharmacodyn. 2011;38:279–92.

    Article  PubMed  CAS  Google Scholar 

  19. Bertrand J, Laffont CM, Mentre F, Chenel M, Comets E. Development of a complex parent-metabolite joint population pharmacokinetic model. AAPS J. 2011;13:390–404.

    Article  PubMed  CAS  Google Scholar 

  20. Boeckmann AJ, Sheiner LB, Beal SL. NONMEM Users Guide-Part V, Introductory Guide. University of California San Francisco: NONMEM Project Group; 1994.

  21. Evans ND, Godfrey KR, Chapman MJ, Chappell MJ, Aarons L, Duffull SB. An identifiability analysis of a parent-metabolite pharmacokinetic model for ivabradine. J Pharmacokinet Pharmacodyn. 2001;28:93–105.

    Article  PubMed  CAS  Google Scholar 

  22. Duval V, Karlsson MO. Impact of omission or replacement of data below the limit of quantification on parameter estimates in a two-compartment model. Pharm Res. 2002;19:1835–40.

    Article  PubMed  CAS  Google Scholar 

  23. Byon W, Fletcher CV, Brundage RC. Impact of censoring data below an arbitrary quantification limit on structural model misspecification. J Pharmacokinet Pharmacodyn. 2008;35:101–16.

    Article  PubMed  Google Scholar 

  24. Xu XS, Dunne A, Kimko H, Nandy P, Vermeulen A. Impact of low percentage of data below the quantification limit on parameter estimates of pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2011;38:423–32.

    Article  PubMed  Google Scholar 

  25. Holford NHG, Sheiner LB. Kinetics of pharmacologic response. Pharmacol Ther. 1982;16:143–66.

    Article  PubMed  CAS  Google Scholar 

  26. Lehr T, Staab A, Tillmann C, Nielsen EO, Trommeshauser D, Schaefer HG, et al. Contribution of the active metabolite M1 to the pharmacological activity of tesofensine in vivo: a pharmacokinetic–pharmacodynamic modelling approach. Br J Pharmacol. 2008;153:164–74.

    Article  PubMed  CAS  Google Scholar 

  27. Lehr T, Staab A, Trommeshauser D, Schaefer HG, Kloft C. Quantitative pharmacology approach in Alzheimer’s Disease: efficacy modeling of early clinical data to predict clinical outcome of tesofensine. AAPS J. 2010;12:117–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge Dr. Maria Pia Saccomani, University of Padova, for helpful discussion on regarding SIA and use of the DAISY software to accomplish this analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stroh.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 81.4 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stroh, M., Hutmacher, M.M., Pang, J. et al. Simultaneous Pharmacokinetic Model for Rolofylline and both M1-trans and M1-cis Metabolites. AAPS J 15, 498–504 (2013). https://doi.org/10.1208/s12248-012-9443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9443-5

KEY WORDS

Navigation