Materials
Dried leaves of Medina and Hasawi mint were kindly provided by Professor A.S. Al-Khalifa. Human LDL cholesterol was purchased from Sigma-Aldrich, St. Louis, MO, USA. Supercoiled plasmid DNA (pBR322, 43 kbp) was procured from Promega Corporation, Madison, WI, USA, and SYBR safe gel stain was from Invitrogen Molecular Probes, Eugene, OR, USA. Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) was purchased from Acros Organics (Fair Lawn, NJ, USA). Organic solvents and reagents such as methanol, acetone, and sodium carbonate were obtained from Fisher Scientific (Nepean, ON, Canada). Folin-Ciocalteu phenol reagent, 2,2′-azobis (2-methylpropionamidine) dihydrochloride (AAPH), 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and all phenolic standards were bought from Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada).
Sample preparation
Extraction of phenolic compounds from Medina and Hasawi mint was performed by the method described by Krygier et al. (1982). Medina and Hasawi mint leaves were ground to a fine powder and about 10 g of each were mixed with 150 mL of methanol/acetone/water (7:7:6, v/v/v). These samples were sonicated at 40 °C for 20 min (Ultrasonik, Whittemore Enterprises, Inc., Rancho Cucamonga, CA, USA), then centrifuged for 5 min at 4000 g. Once centrifuged, the supernatant was collected and the extraction procedure was repeated two more times. The solvent from combined supernatants was removed in vacuo at 40 °C using a Rotavapor (Buchi, Flawil, Switzerland), frozen at − 80 °C for about 4 h and lyophilized for 5 days at − 48 °C and 4.6 × 10− 4 mbar (Freezone, Labconco Co., Kansas City, MO, USA) yielding the crude extract of the soluble phenolic compounds.
To prepare the bound-insoluble phenolic extracts, the residue obtained from the extraction of soluble phenolics was hydrolyzed according to the procedure outlined by Krygier et al. (1982) and Naczk and Shahidi (1989). Briefly, 25 mL of 4 M NaOH were added to the residue in a round bottom flask with a stirring bar. The flask was flushed with nitrogen, sealed, and allowed to stir for 4 h. The mixture was then acidified using 6 M HCl to a pH of 2 and was then centrifuged at 2000 g for 5 min. The supernatant was extracted with an equal volume of hexane to remove fatty acids released during alkaline hydrolysis. Extraction of bound phenolics was achieved by mixing the supernatant with an equal volume of 1:1 (v/v) diethyl ether/ethyl acetate, three times. The ether layer was filtered through anhydrous sodium sulphate in a No. 1 Whatman filter paper and the sample was dried in vacuo at room temperature (Rotavapor, Buchi, Flawil, Switzerland). The bound phenolics were reconstituted in 5 mL of 80% methanol and stored at − 20 °C until use.
To dechlorophyllize the crude soluble phenolic extracts and the crude insoluble-bound extracts of the mint samples, 1.0 g of each was dissolved in 50 mL of 80% methanol following the method described by Alvarez-Parrilla et al. (2011). In a separatory funnel, 100 mL of dichloromethane were added to each extract solution and the organic phase was removed. Chlorophyll was extracted a second time with 15 mL dichloromethane and the organic layer was removed again. Methanol was removed from the extracts in vacuo, at about 50 °C and 66 mbar (Rotavapor, Buchi, Flawil, Switzerland). The dechlorophyllized soluble phenolic extracts were allowed to freeze at − 80 °C and lyophilized for about 72 h.
The aqueous infusions were prepared according to the method outlined by Moraes-de-Souza et al. (2008). Dried powder samples of Medina and Hasawi mint leaves (3.0 g) were steeped in 200 mL of boiling deionized water for 10 min. The mixture was filtered through a Whatman No. 1 filter paper and stored at 4 °C in a glass bottle. This solution was made fresh weekly throughout the study.
Determination of total phenolics
The determination of total phenolics was carried out according to the Folin-Ciocalteau’s reagent assay as described by Singleton and Rossi (1965), with minor modifications. Gallic acid was used as a standard and values were expressed as mg gallic acid equivalents (GAE)/ 100 g of dried sample. Each sample was diluted to fit within the absorbance values for the standard curve.
Radical scavenging based antioxidant activity tests
Trolox equivalent antioxidant capacity (TEAC) assay
The TEAC assay is based on scavenging of 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonate radical cation (ABTS·+). The TEAC assay was performed using a modified version of the method described by Chandrasekara and Shahidi (2010). Briefly, an ABTS·+ solution was prepared by mixing equal volumes of 2.5 mM AAPH with 2.0 mM ABTS in 100 mM saline phosphate buffer (PBS; pH 7.4, 0.15 M NaCl). The mixture was heated to 60 °C and kept there for 12 min while wrapped in aluminum foil to protect it from light. The solution was filtered several times throughout the experiment using a No. 1 filter paper and was used entirely within 2 h. All samples were diluted in PBS to fit within the absorbance range of the standard curve. In triplicate, each diluted sample (40 μL) or trolox standard was added to 1.96 mL of the ABTS·+ solution, vortexed briefly, and allowed to react at ambient temperature. The absorbance at 734 nm was read exactly 6 min after the reagents were mixed. TEAC values were expressed as mmoles trolox equivalents (TE) per 100 g of initial dried sample and were calculated based on the prepared standard curve.
DPPH radical scavenging capacity (DRSC)
The DPPH radical scavenging assay described by Chandrasekara and Shahidi (2011) was adapted with slight modifications. Samples were prepared by dilution in methanol to obtain values within the trolox standard curve. Two milliliters of DPPH solution in methanol (0.18 mM) were added to 0.5 mL of the diluted samples. Contents were mixed well and, after 10 min, were injected into an electron paramagnetic resonance (EPR) spectrometer (Bruker Biospin Co., Billercia, MA, USA). The parameters were set as follows: 5.02 × 102 receiver gain, 1.86 G modulation amplitude, 2.621 s sweep time, 8 scans, 100.000 G sweep width, 3495.258 G center field, 5.12 ms time constant, 9.795 GHz microwave frequency, and 86.00 kHz modulation frequency. The height of the highest peak was recorded (in this case, it was always the second positive peak) and the percentage of the remaining radical scavenging capacity was calculated according to the following equation.
$$ \%\mathrm{DRSC}=100\hbox{-} \left(\mathrm{EPR}\;\mathrm{signal}\kern0.17em \mathrm{of}\kern0.17em \mathrm{the}\kern0.34em \mathrm{sample}\right)/\left(\mathrm{EPR}\;\mathrm{signal}\kern0.17em \mathrm{of}\kern0.17em \mathrm{control}\right)\times 100. $$
Trolox (15.625–200 μM) was used as a standard and the results were reported as mmoles TE per 100 g of initial dried sample.
Oxygen radical absorbance capacity (ORAC) assay
The ORAC assay was performed according to Madhujith and Shahidi (2007) with slight modifications, using a FLUOstar OPTIMA microplate reader (BMG Labtech, Durham, NC, USA). The internal wells of a non-transparent 96-well microplate (Costar Corning Inc., Corning NY, USA) were used in the ORAC assay. Solutions were prepared, in triplicate, by mixing 20 μL of diluted sample or trolox standard (10–100 μM dissolved in 75 mM phosphate buffer, pH 7.4) with 200 μL of 0.11 μM fluorescein (3′,6′-dihydroxyspiro [isobenzofuran-1(3H),9′-[9H]xanthen]-3-one) directly in the microplate. These solutions were incubated at 37 °C in a FLUOstar OPTIMA microplate reader for 15 min before 75 μL of 63.4 mM AAPH (in 75 mM phosphate buffer, pH 7.4) were automatically injected. Excitation and emission (at 485 and 520 nm, respectively) were measured every 3.5 min for 87.5 min with shaking 8 s prior to each cycle. ORAC values were calculated from the area under the fluorescence decay curves between blank and samples and were reported as mmol TE per 100 g of initial dried sample.
Reducing power
The reducing power of the samples was determined according to the method described by Yen and Chen (1995). Briefly, a mixture of 1.0 mL of sample or trolox standard (diluted in 0.2 M phosphate buffer), 2.5 mL of 0.2 M phosphate buffer, and 2.5 mL of 1% (w/v) potassium ferricyanide was incubated at 50 °C for 20 min. Two and a half milliliters of 10% trichloroacetic acid (TCA, w/v) were then added and the mixture was centrifuged at 2000 g for 10 min. For the assay solution, 1.0 mL of the supernatant was added to 2.5 mL deionized water and 0.5 mL of 0.1% ferric chloride (w/v). The absorbance was read at 700 nm and the results were expressed as mmol TE/100 g of initial dried sample.
Iron chelation activity
The chelation of ferrous ions by mint samples was estimated by comparison with ethylenediaminetetraacetic acid (EDTA) according to a modified version of the method described by Wu and Ng (2008). In short, 0.5 mL of sample or EDTA standard (25–300 μM in methanol) were mixed with 1.85 mL methanol and 0.05 mL FeCl2 (1.0 mM). Ferrozine (0.1 mL of 5 mM) was added to the solution and the absorbance was read at 562 nm 10 min later. Samples were corrected against both a blank without sample and a sample blank without ferrozine; iron chelation activity was determined from an EDTA standard curve. Values were expressed as μmol EDTA equivalents per 100 g dried sample.
Inhibition of cupric ion-induced human LDL cholesterol peroxidation
The inhibitory activity of the mint samples against cupric ion-induced low density lipoprotein (LDL) cholesterol oxidation was determined according to the method outlined by Chandrasekara and Shahidi (2011) with slight modifications. Human LDL cholesterol (in PBS, pH 7.4, with 0.01% EDTA) was dialyzed against 10 mM PBS (pH 7.4, 0.15 M NaCl) for 12 h under nitrogen at 4 °C, and EDTA-free LDL was subsequently diluted to obtain standard protein concentration of 0.1 mg/mL with PBS. The Hasawi and Medina bound phenolics were not included in this assay because of their low activity. The soluble phenolics and aqueous infusion samples from Medina and Hasawi mint were diluted in 10 mM PBS to obtain a concentration of 0.1 mg extract per mL. The diluted LDL cholesterol (0.5 mL) was mixed with 100 μL of the sample solution. Oxidation of LDL cholesterol was initiated by adding 400 μL of 12.5 μM cupric sulphate solution in distilled water. The mixture was mixed well and incubated at 37 °C for 20 h. The initial absorbance (t = 0) was read at 232 nm immediately after mixing and conjugated diene (CD) hydroperoxides formed at the end of the 20 h were measured. The corrected absorbance at 20 h against 0 h was employed to calculate the percentage inhibition of CD formation using the following equation: % inhibition of CD formation = (Absoxidative – Abssample)/ (Absoxidative – Absnative) X 100, where Absoxidative = absorbance of LDL mixture and distilled water with CuSO4 only, Abssample = absorbance of LDL with extract and CuSO4, and Absnative = absorbance of LDL with distilled water.
Inhibition of thiobarbituric acid reactive substances (TBARS) formation in a cooked ground meat system
To assess antioxidant effectiveness in food, the amount of TBARS, secondary products of lipid peroxidation, was measured in a meat model system over a two-week period. The shoulder meat used for this test was obtained fresh from a local supermarket. The fat content of the ground meat sample was 12.73 ± 0.27%, as determined according to the procedure of Bligh and Dyer (1959) as modified by Shahidi (2001). Briefly, 10 g of pork with 20% (w/w) deionized water were homogenized using a Polytron PT 3000 (Brinkmann Instruments, Mississauga, ON, USA). Ten millilitres of chloroform and 20 mL of methanol were added and the mixture was homogenized for 2 min. A further 10 mL portion of chloroform was added, followed by 30 s of homogenization, then 10 mL of deionized water were added, and the mixture was homogenized for 30 s again. The mixture was centrifuged at 1000 g for 10 min, and then filtered using a Buchner funnel and Whatman no. 1 filter paper. The residue was re-extracted with chloroform, as above, and all filtrates were placed into a separatory funnel. The chloroform layer was collected and filtered through anhydrous sodium sulphate. The chloroform was evaporated from the lipids using a Rotavapor (Buchi, Flawil, Switzerland) while increasing heat and decreasing pressure until all the solvent was removed.
To determine the activity of mint samples for inhibiting TBARS formation, the method described by Shahidi and Alexander (1998) was followed with slight modifications. To prepare the meat model system, 80 g of freshly ground shoulder meat (5 days postmortem) were mixed with 20 mL of deionized water in a Mason jar. Test samples were added to the meat at a concentration of 200 ppm GAE (gallic acid equivalents), calculated from the values of the total phenolic content assay). A positive control was prepared by adding 200 ppm of butylated hydroxyanisole (BHA) and a control was prepared without any antioxidant. Meat systems were thoroughly mixed and cooked in a water bath at 80 °C for 30 min with occasional stirring. After cooling to room temperature, the samples were homogenized, transferred into plastic bags and stored at 4 °C until analysed for TBARS on days 0, 2, 5, 7, 10, and 14 after preparation. Briefly, 2.0 g of each meat mixture were blended with 5.0 mL of 10% (w/v) trichloroacetic acid (TCA). Then 5.0 mL of 0.02 M 2-thiobarbituric acid (TBA) solution were added and the mixture was vortexed for 30 s and then centrifuged at 1000 g for 10 min. The supernatant was filtered through a Whatman No. 3 filter paper and heated in a boiling water bath for 45 min. The solution was cooled to room temperature and the absorbance was subsequently read at 532 nm. A standard curve was prepared using 1,1,3,3-tetramethoxypropane (1–6 μg/mL) as malondialdehyde (MDA) precursor.
Inhibition against peroxyl radical induced DNA scission
The effectiveness of Medina and Hasawi mint against DNA scission was determined according to the method described by Chandrasekara and Shahidi (2011). DNA strand nicking was induced by peroxyl radical and examined with gel electrophoresis. The DNA was suspended in a buffer solution containing a mixture of Tris base, acetic acid and EDTA (TAE buffer; pH 8.5) at a concentration of 25 μg/mL. A mixture containing 4 μL of supercoiled pBR322 DNA, 4 μL of 30 mM AAPH, and 2 μL of sample diluted in 10 mM PBS were incubated at 37 °C for 1 h. A blank (without sample) and a control (without AAPH or sample) were also prepared. One microliter of loading dye (25% bromophenol blue, 25% xylene cyanol, and 50% glycerol, w/v) was added to each mixture and the samples were loaded onto a 0.7% agarose gel with SYBR safe gel stain. Gel electrophoresis was run at 80 V for about 1.5 h and the bands were visualized under UV light. The intensity of the DNA bands was measured using the SpotDenso tool in ChemiImager software (Alpha Innotech Corporation, San Leandro, CA, USA). Antioxidant activity was expressed as a percentage of the DNA that remained intact to the DNA that was nicked normalized against the control.
Inhibition of LPS stimulated COX-2 expression in J774A.1 mouse macrophage cells
Cell and cell culture condition
The J774A.1 cells were obtained from American Type Culture Collection (ATCC, Menassas VA) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) with 10% fetal bovine serum and 1% Amphotericin B/Streptomycin/Penicillin at 37 °C and 5% CO2. All experiments for J774A.1 were conducted in the same medium.
mRNA isolation, cDNA synthesis and gene expression analysis
To determine the mRNA expression levels in J774A.1 mouse macrophage, cells were cultured in 6 well plates (Costar, Corning Incorporated, Corning, NY, USA) overnight. J774A.1 cells were incubated in DMEM with 10% fetal bovine serum and 1% antibiotic/antimycotic. Samples (50, 20 and 5 μg/mL) were used to treat the macrophages, and media were replaced every 24 h. After 48 h incubation, for the control group, media were replaced, and for induction group, 10 ng/mL LPS was added into the media for inducing pro-inflammatory mediators (Huang et al. 2012). After 4 h induction, culture media was discarded and cells were collected according to the previously published protocol (Trasino et al. 2009). Briefly, cells were washed with 1 × PBS twice and TRIzol reagent was added for total RNA isolation. StrataScript First Strand complementary DNA Synthesis kit was used to reverse transcribed complementary DNA. Inhibitory effect of mint samples on COX-2 expression was examined by real-time PCR. Real-time PCR was performed on ABI Prism 7900HT Sequence Detection System using TaqMan Universal PCR Master Mix. The TaqMan gene expression assay for prostaglandin-endoperoxide synthase 2 (COX-2) was acquired from Applied Biosystems (Carlsbad, CA, USA) and used for gene detection. The mRNA amounts were normalized to an internal control, TATA-binding protein (TBP) mRNA. The following amplification parameters were used for PCR: 50 °C for 2 min, 95 °C for 10 min, and 46 cycles of amplification at 95 °C for 15 s and 60 °C for 1 min.
Determination of major phenolic compounds by HPLC/ESI-MS/MS
Reversed phase high performance liquid chromatography with tandem mass spectrometry was used to determine the major phenolic compounds present in the mint samples. A slightly modified version of the method outlined by Zheng and Wang (2001) was used. Briefly, samples were prepared by dissolving 0.02 g extract in 2.0 mL of 50% HPLC-grade methanol and passed through a 0.45-μm filter before injection into a reverse phase C18 column (250 mm length, 4.6 mm i.d., 5 μm particle size, Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada) with a guard column. The mobile phase was acetonitrile (A) and acidified water containing 2.5% formic acid (B). The gradient was as follows: 0 min, 5% A; 10 min, 15% A; 30 min, 25% A; 35 min, 30% A; 50 min, 55% A; 55 min, 90% A; 57 min, 100% A and then held for 10 min before returning to the initial conditions. The flow rate was 1.0 mL/min and the wavelengths of detection were 280, 350, and 380 nm. LC flow was analyzed online by a mass selective detector system (LC-MSD-Trap-SL, Agilent) in electrospray ionization (ESI) mode. An external standard method using authentic compounds was used to confirm the identified compounds.
Statistical analysis
All statistical analysis was completed with Sigmastat for Windows version 2.0 (Jandel Corp., San Rafael, CA, USA). All analyses were completed in triplicate and values are expressed as the mean ± standard deviation (SD). Two-way analysis of variance (ANOVA), with Tukey’s Honestly Significant Differences (HSD) test, was conducted for the TBARS assay and one-way ANOVA with pairwise comparisons and Tukey’s test was completed for all other assays. Differences were considered significant at the p < 0.05 level.