Anh VL, Anh NT, Tagle AG, Vy TT, Inoue Y, Takumi S, et al. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology. 2015;105(12):1568–72.
CAS
PubMed
Google Scholar
Anh VL, Inoue Y, Asuke S, Vy TTP, Anh NT, Wang S, et al. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Mol Plant Pathol. 2018;19:1252–6.
CAS
PubMed
Google Scholar
Barea G, Toledo J. Identificación y zonificación de Pyricularia o brusone (Pyricularia oryzae) en el cutivo de trigo en el departamento de Santa Cruz. Santa Cruz de la Sierra: Centro de Investigación Agrícola Tropical. Informe Tecnico. Proyecto de Investigacion Trigo; 1996. p. 76–86.
Bhowmik P, Ellison E, Polley B, Bollina V, Kulkarni M, Ghanbarnia K, et al. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci Rep. 2018;8:6502.
PubMed
PubMed Central
Google Scholar
Cabrera MG, Gutiérrez S. Primer registro de Pyricularia grisea en cultivos de trigo del NE de Argentina. Jornada de Actualización en Enfermedades de Trigo. Buenos Aires: IFSC Press; 2007;60.
Callaway E. Devastating wheat fungus appears in Asia for first time. Nature. 2016;532:421–2.
PubMed
Google Scholar
Castroagudin VL, Ceresini PC, de Oliveira SC, Reges JTA, Maciel JLN, Bonato ALN, et al. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology. 2015;105:284–94.
CAS
PubMed
Google Scholar
Cardoso CAA, Reis EM, Moreira EN. Development of a warning system for wheat blast caused by Pyricularia grisea. Summa Phytopathol. 2008;34:216–21.
Ceresini PC, Castroagudín VL, Rodrigues FA, Rios JA, Aucique-Pérez CE, Moreira SI, et al. Wheat blast: past, present, and future. Annu Rev Phytopathol. 2018;56:427–56.
CAS
PubMed
Google Scholar
Ceresini PC, Castroagudín VL, Rodrigues FA, Rios JA, Aucique-Pérez CE, Moreira SI, et al. Wheat blast: from its origins in South America to its emergence as a global threat. Mol Plant Pathol. 2019;20(2):155–72.
PubMed
Google Scholar
Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T. Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Front Microbiol. 2020;11:665.
PubMed
PubMed Central
Google Scholar
Chen XL, Shi T, Yang J, Shi W, Gao X, Chen D, et al. N-glycosylation of effector proteins by an α-1, 3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell. 2014;26(3):1360–76.
CAS
PubMed
PubMed Central
Google Scholar
Chiapello H, Mallet L, Guérin C, Aguileta G, Amselem J, Kroj T, et al. Deciphering genome content and evolutionary relationships of isolates from the fungus Magnaporthe oryzae attacking different host plants. Genome Biol Evol. 2015;7:2896–912.
CAS
PubMed
PubMed Central
Google Scholar
Cruppe G, Cruz CD, Peterson G, Pedley K, Asif M, Fritz A, et al. Novel sources of wheat head blast resistance in modern breeding lines and wheat wild relatives. Plant Dis. 2020;104:35–43.
PubMed
Google Scholar
Cruz CD, Kiyuna J, Bockus WW, Todd TC, Stack JP, Valent B. Magnaporthe oryzae conidia on basal wheat leaves as a potential source of wheat blast inoculum. Plant Pathol. 2015;64(6):1491–8.
CAS
Google Scholar
Cruz CD, Magarey RD, Christie DN, Fowler GA, Fernandes JM, Bockus WW, et al. Climate suitability for Magnaporthe oryzae Triticum pathotype in the United States. Plant Dis. 2016b;100:1979–87.
PubMed
Google Scholar
Cruz CD, Peterson GL, Bockus WW, Kankanala P, Dubcovsky J, Jordan KW, et al. The 2NS translocation from Aegilops ventricosa confers resistance to the Triticum pathotype of Magnaporthe oryzae. Crop Sci. 2016a;56(3):990–1000.
CAS
PubMed
PubMed Central
Google Scholar
Cruz CD, Valent B. Wheat blast disease: danger on the move. Trop Plant Pathol. 2017;42:210–22.
Google Scholar
Dutta S, Surovy MZ, Gupta DR, Mahmud NU, Chanclud E, Win J, et al. Genomic analyses reveal that biocontrol of wheat blast by Bacillus spp. may be linked with production of antimicrobial compounds and induced systemic resistance in host plants. Figshare. 2018;17:48.
Duveiller E, Hodson D, Sonder K, von Tiedemann A. An international perspective on wheat blast. Phytopathology. 2011;101:S220.
Google Scholar
El Refaei MI. Epidemiology of rice blast disease in tropics with special reference to the leaf wetness in relation to disease development. New Delhi: Ph.D. Thesis, Indian Agricultural Research Institute; 1977.
Google Scholar
Faivre-Rampant O, Thomas J, Allegre M, Morel JB, Tharreau D, Notteghem JL, et al. Characterization of the model system rice-Magnaporthe for the study of non-host resistance in cereals. New Phytol. 2008;180:899–910.
CAS
PubMed
Google Scholar
Farman M, Peterson G, Chen L, Starnes J, Valent B, Bachi P, et al. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis. 2017;101:684–92.
CAS
PubMed
Google Scholar
Farman ML. Pyricularia grisea isolates causing gray leaf spot on perennial ryegrass (Lolium perenne) in the United States: relationship to P. grisea isolates from other host plants. Phytopathol. 2002;92:245–54.
Google Scholar
Fernández-Ortuño D, Pérez-García A, López-Ruiz F, Romero D, de Vicente A, Torés JA. Occurrence and distribution of resistance to QoI fungicides in populations of Podosphaera fusca in south Central Spain. Eur J Plant Pathol. 2006;115:215–22.
Google Scholar
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484:186–94.
CAS
PubMed
Google Scholar
Gill BS, Sharma HC, Raupp WJ, Browder LE, Hatchett JH, Harvely TL, et al. Evaluation of Aegilops species for resistance to wheat powdery mildew, wheat leaf rust, Hessian fly and green bug. Plant Dis. 1985;69:314–6.
Google Scholar
Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun. 2013;4:1996.
PubMed
PubMed Central
Google Scholar
Gladieux P, Condon B, Ravel S, Soanes D, Maciel JL, Nhani A, et al. Gene flow between divergent cereal- and grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio. 2018;9:e01219–7.
PubMed
PubMed Central
Google Scholar
Goulart ACP, Paiva FA, Mesquita AN. Occurrence of wheat blast (Pyricularia oryzae) in the state of Mato Grosso do Sul. Fitopatol Bras. 1990;15:112-4 (in Portuguese).
Google Scholar
Goulart ACP, Paiva FA. Incidence of blast (Pyricularia oryzae) in different wheat cultivars under field conditions. Fitopatol Bras. 1992;17:321–5 (in Portuguese).
Google Scholar
Goulart ACP, Paiva FA. Wheat yield losses due to Pyricularia grisea, in 1991 and 1992, in the state of Mato Grosso do Sul. Summa Phytopathol. 2000;26(2):279–82 (in Portuguese).
Google Scholar
Goulart ACP, Paiva FA, Mesquita N. Perdas em trigo (Triticum aestivum) causadas por Pyricularia oryzae. Fitopatol Bras. 1992;17:115–7 (in Portuguese).
Google Scholar
Goulart ACP, Sousa PG, Urashima AS. Damages in wheat caused by infection of Pyricularia grisea. Summa Phytopathol. 2007;33:358–63.
Google Scholar
Gupta DR, Avila CS, Win J, Soanes DM, Ryder LS, Croll D, et al. Cautionary notes on use of the MoT3 diagnostic assay for Magnaporthe oryzae wheat and rice blast isolates. Phytopathol. 2019;109:504–8.
CAS
Google Scholar
Ha X, Wei T, Koopmann B, von Tiedemann A. Microclimatic requirements for wheat blast (Magnaporthe grisea) and characterisation of resistance in wheat. In: Tielkes E, editor. Resilience of agricultural systems against crises. Göttingen: Cuvillier Verlag; 2012. p. 155.
Google Scholar
Hamer JE, Howard RJ, Chumley FG, Valent B. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science. 1988;239(4837):288–90.
CAS
PubMed
Google Scholar
Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, et al. Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci. 2018;9:617.
PubMed
PubMed Central
Google Scholar
He X, Kabir MR, Roy KK, Anwar MB, Xu K, Marza F, et al. QTL mapping for field resistance to wheat blast in the Caninde#1/Alondra population. Theor Appl Genet. 2020. https://doi.org/10.1007/s00122-020-03624-x.
Hossain A, da Silva JAT. Wheat production in Bangladesh: its future in the light of global warming. AoB Plants. 2013;5:pls042.
PubMed
Google Scholar
Igarashi S. Update on wheat blast (Pyricularia oryzae) in Brazil. In: Saunders DA, editor. A proceeding of the international conference-wheat for the nontraditional warm areas. Mexico: CIMMYT; 1990. p. 480–3.
Google Scholar
Igarashi S, Utiamada CM, Igarashi LC, Kazuma AH, Lopes RS. Occurrence of Pyrcularia sp. in wheat (Triticum aestivum L.) in the state of Paraná, Brazil. Fitopatol Bras. 1986;11:351–2.
Google Scholar
Inoue Y, Vy TTP, Yoshida K, Asano H, Mitsuoka C, Asuke S, et al. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science. 2017;357(6346):80–3.
CAS
PubMed
Google Scholar
Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, et al. Emergence of wheat blast in Bangladesh was caused by a south American lineage of Magnaporthe oryzae. BMC Biol. 2016;14:84.
PubMed
PubMed Central
Google Scholar
Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soil-borne Peronosporomycetes. Appl Environ Microbiol. 2005;71:3786–96.
CAS
PubMed
PubMed Central
Google Scholar
Islam MT, Kim KH, Choi J. Wheat blast in Bangladesh: the current situation and future impacts. Plant Pathol J. 2019;35(1):1–10.
CAS
PubMed
PubMed Central
Google Scholar
Islam MT, von Tiedemann A, Laatsch H. Protein kinase C is likely to be involved in zoosporogenesis and maintenance of flagellar motility in the peronosporomycete zoospores. Mol Plant-Microbe Interact. 2011;24(8):938–47.
CAS
PubMed
Google Scholar
Islam T. CRISPR-Cas technology in modifying food crops. CAB Rev. 2019;14:50. https://doi.org/10.1079/PAVSNNR201914050.
Article
Google Scholar
Jensen C, Tosa Y, Islam MT, Talbot NJ, Kamoun S, Saunders DGO. Rmg8 confers resistance to the Bangladeshi lineage of the wheat blast fungus. Zenodo. 2019. https://doi.org/10.5281/zenodo.2574196.
Juliana P, Poland J, Huerta-Espino J, Shrestha S, Crossa J, Crespo-Herrera L, et al. Improving grain yield, stress-resilience, and quality of bread wheat using large-scale genomics. Nat Genet. 2019;51:1530–9.
CAS
PubMed
Google Scholar
Kamoun S, Talbot NJ, Islam MT. Plant health emergencies demand open science: tackling a cereal killer on the run. PLOS Biol. 2019;17:e3000302.
Kankanala P, Czymmek K, Valent B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell. 2007;19:706–24.
CAS
PubMed
PubMed Central
Google Scholar
Kato H, Yamamoto M, Yamaguchi-Ozaki T, Kadouchi H, Iwamoto Y, Nakayashiki H, et al. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J Gen Plant Pathol. 2000;66:30–47.
Kim YA, Moon H, Park CJ. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice. 2019;12:67.
Kohli MM, Mehta YR, Guzman E, De Viedma L, Cubilla LE. Pyricularia blast — a threat to wheat cultivation. Czech J Genet Plant Breed. 2011;47:S130–4.
Langner T, Kamoun S, Belhaj K. CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol. 2018;56:479–512.
CAS
PubMed
Google Scholar
Liu W, Liu J, Ning Y, Ding B, Wang X, Wang Z, et al. Recent progress in understanding PAMP-and effector-triggered immunity against the rice blast fungus Magnaporthe oryzae. Mol Plant. 2013;6(3):605–20.
CAS
PubMed
Google Scholar
Maciel JLN, Ceresini PC, Castroagudin VL, Zala M, Kema GHJ, McDonald BA. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology. 2014;104:95–107. https://doi.org/10.1094/PHYTO-11-12-0294-R.
CAS
Article
PubMed
Google Scholar
Maekawa T, Schulze-Lefert P. Caught in the jump. Science. 2017;357(6346):31–2.
CAS
PubMed
Google Scholar
Malaker PK, Barma NCD, Tiwari TP, Collis WJ, Duveiller E, Singh PK, et al. First report of wheat blast caused by Magnaporthe oryzae pathotype Triticum in Bangladesh. Plant Dis. 2016;100:2330.
Google Scholar
McGrath MT. Fungicide resistance in cucurbit powdery mildew: experience and challenges. Plant Dis. 2001;85:236–45.
PubMed
Google Scholar
Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell. 2012;24:322–35.
CAS
PubMed
PubMed Central
Google Scholar
Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B. Interaction transcriptome analysis identies Magnaporthe oryzae BAS1–4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell. 2009;21:1273–90.
Mottaleb KA, Singh PK, Sonder K, Kruseman G, Tiwari TP, Barma NCD, et al. Threat of wheat blast to South Asia’s food security: an ex-ante analysis. PLoS One. 2018;13:e0197555.
PubMed
PubMed Central
Google Scholar
Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S. Rapid generation of a transgene free powdery mildew resistant tomato by genome deletion. Sci Rep. 2017;7:482.
PubMed
PubMed Central
Google Scholar
Nga NTT, Hau VTB, Tosa Y. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome. 2009;52:801–9.
CAS
PubMed
Google Scholar
Nukina M. The blast disease fungi and their metabolic products. J Pestic Sci. 1999;24:293–8. (in Japanese). https://doi.org/10.1584/jpestics.24.293.
CAS
Article
Google Scholar
Oliveira SC, Castroagudín VL, Nunes Maciel JL, dos Santos Pereira DA, Ceresini PC. Cross-resistance to QoI fungicides azoxystrobin and pyraclostrobin in the wheat blast pathogen Pyricularia oryzae in Brazil. Summa Phytopathol. 2015;41(4):298–304 (in Portuguese).
Google Scholar
Park JH, Choi GJ, Jang KS, Lim HK, Kim HT, Cho KY, et al. Antifungal activity against plant pathogenic fungi of chaetoviridins isolated from Chaetomium globosum. FEMS Microbiol Lett. 2005;252(2):309–13.
CAS
PubMed
Google Scholar
Patkar RN, Benke PI, Qu Z, Chen YY, Yang F, Swarup S, et al. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol. 2015;11:733–40.
CAS
PubMed
Google Scholar
Peng AH, Chen SC, Lei TG, Xu LZ, He YR, Wu L, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J. 2017;15:1509–19.
CAS
PubMed
PubMed Central
Google Scholar
Pieck ML, Ruck A, Farman ML, Peterson GL, Stack JP, Valent B, et al. Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Dis. 2017;101(1):103–9.
CAS
PubMed
Google Scholar
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28:489–521.
CAS
PubMed
Google Scholar
Pizolotto CA, Maciel JLN, Fernandes JMC, Boller W. Saprotrophic survival of Magnaporthe oryzae in infested wheat residues. Eur J Plant Pathol. 2019;153:327–39.
Google Scholar
Prabhu AS, Filippi MC, Castro N. Pathogenic variation among isolates of Pyricularia oryzae affecting rice, wheat and grasses in Brazil. Trop Pest Manage. 1992;38:367–71.
Google Scholar
Scheben A, Edwards D. Genome editors take on crops. Science. 2017;355(6330):1122–3.
CAS
PubMed
Google Scholar
Singh PK, Singh AK, Singh HB, Dhakad BK. Biological control of rice blast disease with Trichoderma harzianum in direct seeded rice under medium low land rainfed conditions. Environ Ecol. 2012;30(3B):834–7.
Google Scholar
Surovy MZ, Gupta DR, Chanclud E, Win J, Kamoun S, Islam T. Plant probiotic bacteria suppress wheat blast fungus Magnaporthe oryzae Triticum pathotype. Figshare. 2017. https://doi.org/10.6084/m9.figshare.5549278.v1.
Surovy MZ, Gupta DR, Mahmud NU, Bhattacharjee P, Hossain MS, Mehebub MS, Rahaman M, et al. Modulation of nutritional and biochemical properties of wheat grains infected by the blast fungus Magnaporthe oryzae Triticum pathotype. Front Microbiol. 2020. https://doi.org/10.3389/fmicb.2020.01174.
Tagle AG, Chuma I, Tosa Y. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology. 2015;105:495–9.
CAS
PubMed
Google Scholar
Takabayashi N, Tosa Y, Oh HS, Mayama S. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology. 2002;92(11):1182–8.
CAS
PubMed
Google Scholar
Thierry M, Gladieux P, Fournier E, Tharreau D, Ioos R. A genomic approach to develop a new qPCR test enabling detection of the Pyricularia oryzae lineage causing wheat blast. Plant Dis. 2020;104:60–70.
PubMed
Google Scholar
Tosa Y, Tamba H, Tanaka K, Mayama S. Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology. 2006;96(5):480–4.
CAS
PubMed
Google Scholar
Tufan HA, McGrann GRD, Magusin A, Morel JB, Miché L, Boyd LA. Wheat blast: histopathology and transcriptome reprogramming in response to adapted and non-adapted Magnaporthe isolates. New Phytol. 2009;184:473–84.
PubMed
Google Scholar
Urashima AS. Blast. In: Bockus WW, Bowden RL, Hunger RM, Morrill WL, Murray TD, Smiley RW, editors. Compendium of wheat diseases and pests. 3rd ed. Saint Paul: American Phytopathological Society Press; 2010. p. 22–3.
Google Scholar
Urashima AS, Grosso CRF, Stabili A, Freitas EG, Silva CP, Netto DCS, et al. Effect of Magnaporthe grisea on seed germination, yield and quality of wheat. In: Advances in genetics, genomics and control of Rice blast disease. Dordrecht: Springer; 2009. p. 267–77.
Google Scholar
Urashima AS, Hashimoto Y, Don LD, Kusaba M, Tosa Y, Nakayashiki H, et al. Molecular analysis of the wheat blast population in Brazil with a homolog of retrotransposon MGR583. Ann Phytopathol Soc Jpn. 1999;65:429–36.
CAS
Google Scholar
Urashima AS, Igarashi S, Kato H. Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis. 1993;77:1211–6.
Google Scholar
Urashima AS, Martins TD, Bueno CRNC, Favaro DB, Arruda MA, Mehta YR. Triticale and barley: new hosts of Magnaporthe grisea in São Paulo, Brazil-relationship with blast of rice and wheat. In: Kawasaki S, editor. Rice blast: interaction with Rice and control. Dordrecht: Springer; 2004. p. 251–60.
Google Scholar
Valent B, Farman M, Tosa Y, Begerow D, Fournier E, Gladieux P, et al. Pyricularia graminis-tritici is not the correct species name for the wheat blast fungus: response to Ceresini et al. (MPP 20: 2). Mol Plant Pathol. 2019;20:173–9.
PubMed
PubMed Central
Google Scholar
Vales M, Anzoátegui T, Huallpa B, Cazon MI. Review on resistance to wheat blast disease (Magnaporthe oryzae Triticum) from the breeder point-of-view: use of the experience on resistance to rice blast disease. Euphytica. 2018;214:1. https://doi.org/10.1007/s10681-017-2087-x.
Article
Google Scholar
Viedma LQ, Morel W. Añublo o Piricularia del Trigo (Wheat Blast). Díptico. MAG/DIA/CRIA. Programa de Investigación de Trigo. Paraguay: CRIA; 2002.
Google Scholar
Vy TTP, Hyon GS, Nga NTT, Inoue Y, Chuma I, Tosa Y. Genetic analysis of host–pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. J Gen Plant Pathol. 2014;80:59–65.
Google Scholar
Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLOS One. 2016;11(4):e0154027.
Wang GL, Valent B. Durable resistance to rice blast. Science. 2017;355(6328):906–7.
Wang S, Asuke S, Vy TTP, Inoue Y, Chuma I, Win J, et al. A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology. 2018;108:1299–306.
CAS
PubMed
Google Scholar
Wilson RA, Talbot NJ. Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol. 2009;7(3):185–95.
CAS
PubMed
Google Scholar
Yan X, Talbot NJ. Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Curr Opin Microbiol. 2016;34:147–53.
CAS
PubMed
Google Scholar
Yasuhara-Bell J, Pedley KF, Farman M, Valent B, Stack JP. Specific detection of the wheat blast pathogen (Magnaporthe oryzae Triticum) by loop-mediated isothermal amplification. Plant Dis. 2018;102:2550–9.
PubMed
Google Scholar
Yoshida K, Saunders DGO, Mitsuoka C, Natsume S, Kosugi S, Saitoh H, et al. Host specialization of the blast fungus Magnaporthe oryzae is associated with dynamic gain and loss of genes linked to transposable elements. BMC Genomics. 2016;17:370.
PubMed
PubMed Central
Google Scholar
Zaidi SS-A, Mukhtar MS, Mansoor S. Genome editing: targeting susceptibility genes for plant disease resistance. Trends Biotechnol. 2018;36(9):898–906.
CAS
PubMed
Google Scholar
Zhan SW, Mayama S, Tosa Y. Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome. 2008;51:216–21.