Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2013) | SpringerLink [Internet]. [cited 2020 Aug 27]. Available from: https://link.springer.com/article/10.1007/s00705-013-1688-5.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;0(0) [cited 2020 Apr 4]. Available from: https://www.cell.com/cell/abstract/S0092-8674(20)30229–4.
Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88(2):1293–307.
PubMed
PubMed Central
Google Scholar
Blais C, Fortin D, Rouleau JL, Molinaro G, Adam A. Protective effect of omapatrilat, a vasopeptidase inhibitor, on the metabolism of bradykinin in normal and failing human hearts. J Pharmacol Exp Ther. 2000;295(2):621–6.
CAS
PubMed
Google Scholar
Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res. 2020[cited 2020 May 8]; Available from. https://doi.org/10.1007/s12975-020-00818-9.
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. [cited 2020 May 8]; Available from: https://ashpublications.org/blood/article/doi/10.1182/blood.2020006000/454646/COVID-19-and-its-implications-for-thrombosis-and.
Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol. 2020;9:1–2.
Google Scholar
Wang L, He W, Yu X, et al. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80(6):639–45. https://doi.org/10.1016/j.jinf.2020.03.019.
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74.
CAS
PubMed
Google Scholar
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355–62.
CAS
PubMed
PubMed Central
Google Scholar
Long Q, Liu B, Deng, H. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26:845–8. https://doi.org/10.1038/s41591-020-0897-1.
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. 2020;11 [cited 2020 Jun 22]. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2020.00827/full?utm_source=fweb&utm_medium=nblog&utm_campaign=ba-sci-fimmu-covid-tcell-exhaustion.
Ellinghaus D, Degenhardt F, Bujanda L, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure [published online ahead of print, 2020 Jun 17]. N Engl J Med. 2020;NEJMoa2020283. https://doi.org/10.1056/NEJMoa2020283.
Bornstein SR, Dalan R, Hopkins D, et al. Endocrine and metabolic link to coronavirus infection. Nat Rev Endocrinol. 2020;16:297–8.
Teuwen L, Geldhof V, Pasut A, et al. COVID-19: the vasculature unleashed. Nat Rev Immunol. 2020;20:389–91. https://doi.org/10.1038/s41577-020-0343-0.
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003 Nov;426(6965):450–4.
CAS
PubMed
PubMed Central
Google Scholar
Mary D, Frank H, Elizabeth B, Kevin G, Michael G, Nancy S, et al. A novel angiotensin-converting enzyme–related Carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):e1–9.
Google Scholar
Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238–43.
CAS
PubMed
Google Scholar
Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ J Off J Jpn Circ Soc. 2013;77(2):301–8.
CAS
Google Scholar
Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004;279(17):17996–8007.
CAS
PubMed
Google Scholar
Turner AJ, Tipnis SR, Guy JL, Rice GI, Hooper NM. ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can J Physiol Pharmacol. 2002;80(4):346–53.
CAS
PubMed
Google Scholar
Angiotensin-Converting Enzyme 2 - an overview | ScienceDirect Topics. [cited 2020 Apr 14]. Available from: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/angiotensin-converting-enzyme-2.
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): the ubiquitous system for homeostasis and pathologies. Biomed Pharmacother Biomedecine Pharmacother. 2017;94:317–25.
CAS
Google Scholar
Mirabito Colafella KM, Bovée DM, Danser AHJ. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp Eye Res. 2019;186:107680.
CAS
PubMed
Google Scholar
Chaszczewska-Markowska M, Sagan M, Bogunia-Kubik K. The renin-angiotensin-aldosterone system (RAAS) - physiology and molecular mechanisms of functioning. Postepy Hig Med Dosw (Online). 2016;70(0):917–27.
Google Scholar
Xudong X, Junzhu C, Xingxiang W, Furong Z, Yanrong L. Age- and gender-related difference of ACE2 expression in rat lung. Life Sci. 2006;78(19):2166–71.
PubMed
Google Scholar
Cheng H, Wang Y, Wang G-Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J Med Virol. 2020[cited 2020 Apr 13]; Available from. https://doi.org/10.1002/jmv.25785.
Sungnak W, Huang N, Bécavin C, Berg M, Network HLB. SARS-CoV-2 entry genes are Most highly expressed in nasal goblet and ciliated cells within human airways. Nat Med. 2020; [cited 2020 May 10]; Available from: http://arxiv.org/abs/2003.06122.
Allred AJ, Diz DI, Ferrario CM, Chappell MC. Pathways for angiotensin-(1—7) metabolism in pulmonary and renal tissues. Am J Physiol-Ren Physiol. 2000;279(5):F841–50.
CAS
Google Scholar
Pereira MGAG, Souza LL, Becari C, Duarte DA, Camacho FRB, Oliveira JAC, et al. Angiotensin II-independent angiotensin-(1–7) formation in rat hippocampus: involvement of thimet oligopeptidase. Hypertens Dallas Tex 1979. 2013;62(5):879–85.
CAS
Google Scholar
Santos RA, Brosnihan KB, Jacobsen DW, DiCorleto PE, Ferrario CM. Production of angiotensin-(1–7) by human vascular endothelium. Hypertension. 1992; Feb [cited 2020 Apr 13]; Available from: https://www.ahajournals.org/doi/abs/10.1161/01.hyp.19.2_suppl.ii56.
Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002 Jun;417(6891):822–8.
CAS
PubMed
Google Scholar
Bader M. ACE2, angiotensin-(1–7), and mas: the other side of the coin. Pflüg Arch - Eur J Physiol. 2013;465(1):79–85.
CAS
Google Scholar
Silva AS e, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and mas receptor axis in inflammation and fibrosis. Br J Pharmacol. 2013;169(3):477–92.
Google Scholar
Xiao F, Burns KD. Measurement of angiotensin converting enzyme 2 activity in biological fluid (ACE2). Methods Mol Biol Clifton NJ. 2017;1527:101–15.
CAS
Google Scholar
Zmora P, Hoffmann M, Kollmus H, Moldenhauer A-S, Danov O, Braun A, et al. TMPRSS11A activates the influenza a virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. J Biol Chem. 2018;293(36):13863–73.
CAS
PubMed
PubMed Central
Google Scholar
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol. 2011;85(2):873–82.
CAS
PubMed
Google Scholar
Haga S, Yamamoto N, Nakai-Murakami C, Osawa Y, Tokunaga K, Sata T, et al. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc Natl Acad Sci U S A. 2008;105(22):7809–14.
CAS
PubMed
PubMed Central
Google Scholar
Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench MO, et al. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. J Virol. 2010;84(2):1198–205.
CAS
PubMed
Google Scholar
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci U S A. 2009;106(14):5871–6.
CAS
PubMed
PubMed Central
Google Scholar
Mathewson AC, Bishop A, Yao Y, Kemp F, Ren J, Chen H, et al. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. J Gen Virol. 2008;89(Pt 11):2741–5.
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020; [cited 2020 Apr 12]; Available from: http://www.sciencedirect.com/science/article/pii/S009286742030338X.
Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. Goff SP, editor. J Virol. 2015;89(4):1954–64.
PubMed
Google Scholar
Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A, et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci. 2020;117(21):11727–34.
CAS
PubMed
PubMed Central
Google Scholar
Gaddam R, Chambers S, Bhatia M. ACE and ACE2 in inflammation: a tale of two enzymes. Inflamm Allergy-Drug Targets. 2014 Jul 13;13(4):224–34.
CAS
PubMed
Google Scholar
Ruiz-Ortega M, Lorenzo O, Suzuki Y, Rupérez M, Egido J. Proinflammatory actions of angiotensins. Curr Opin Nephrol Hypertens. 2001;10(3):321–9.
CAS
PubMed
Google Scholar
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11(8):875–9.
CAS
PubMed
PubMed Central
Google Scholar
Sodhi CP, Nguyen J, Yamaguchi Y, Werts AD, Lu P, Ladd MR, et al. A dynamic variation of pulmonary ACE2 is required to modulate Neutrophilic inflammation in response to Pseudomonas aeruginosa lung infection in mice. J Immunol. 2019;203(11):3000–12.
CAS
PubMed
Google Scholar
Ye R, Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp Mol Pathol. 2020 Apr;113:104350.
CAS
PubMed
Google Scholar
Yang P, Gu H, Zhao Z, Wang W, Cao B, Lai C, et al. Angiotensin-converting enzyme 2 (ACE2) mediates influenza H7N9 virus-induced acute lung injury. Sci Rep. 2014;4(1):1–6.
CAS
Google Scholar
Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio. 2018;9(5) [cited 2020 Apr 11]. Available from: https://mbio.asm.org/content/9/5/e01753-18.
Ye J, Zhang B, Xu J, Chang Q, McNutt MA, Korteweg C, et al. Molecular pathology in the lungs of severe acute respiratory syndrome patients. Am J Pathol. 2007;170(2):538–45.
CAS
PubMed
PubMed Central
Google Scholar
Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–8.
CAS
PubMed
PubMed Central
Google Scholar
Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respir Int Rev Thorac Dis. 2017;93(3):212–25.
CAS
Google Scholar
Luo W, Yu H, Gou J, Li X, Sun Y, Li J, et al. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). 2020; [cited 2020 May 10]; Available from: https://www.preprints.org/manuscript/202002.0407/v1.
Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368 [cited 2020 Apr 14]. Available from: https://www.bmj.com/content/368/bmj.m1091.
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239–42.
CAS
PubMed
Google Scholar
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–9.
CAS
PubMed
PubMed Central
Google Scholar
Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA. 2020; [cited 2020 Apr 14]; Available from: https://jamanetwork.com/journals/jama/fullarticle/2763485.
Cao J, Tu W-J, Cheng W, Yu L, Liu Y-K, Hu X, et al. Clinical features and short-term outcomes of 102 patients with Corona virus disease 2019 in Wuhan, China. Clin Infect Dis. [cited 2020 Apr 14]; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa243/5814897.
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–2.
CAS
PubMed
PubMed Central
Google Scholar
Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? Eur Heart J. [cited 2020 Apr 14]; Available from: https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehaa254/5813284.
Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020; [cited 2020 Apr 16]; Available from: http://www.sciencedirect.com/science/article/pii/S0049384820301201.
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; [cited 2020 Apr 16]; Available from: https://jamanetwork.com/journals/jamaneurology/fullarticle/2764549.
Kumar A, Pareek V, Prasoon P, Faiq MA, Kumar P, Kumari C, et al. Possible routes of SARS-CoV-2 invasion in brain: in context of neurological symptoms in COVID-19 patients. J Neurosci Res. 2020;00:1–8.
Pena-Silva RA, Heistad DD. Stages in discovery: ACE2 and stroke. Hypertension. 2015;66(1):15–6.
CAS
PubMed
Google Scholar
Bennion DM, Haltigan E, Regenhardt RW, Steckelings UM, Sumners C. Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-mas axis in stroke. Curr Hypertens Rep. 2015 Feb;17(2):3.
PubMed
PubMed Central
Google Scholar
Peña SRA, Yi C, Miller Jordan D, Mitchell Ian J, Penninger Josef M, Faraci Frank M, et al. Impact of ACE2 deficiency and oxidative stress on cerebrovascular function with aging. Stroke. 2012;43(12):3358–63.
Google Scholar
Long Q-X, Tang X-J, Shi Q-L, Li Q, Deng H-J, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;18:1–5.
Google Scholar
Wang Y, Li X, Liu W, Gan M, Zhang L, Wang J, et al. dif. Emerg Microbes Infect. 2020;9(1):246–55.
CAS
PubMed
PubMed Central
Google Scholar
Hand J, Rose EB, Salinas A, Lu X, Sakthivel SK, Schneider E, et al. Severe respiratory illness outbreak associated with human coronavirus NL63 in a Long-term care facility. Emerging Infect Dis J- CDC. 2018;24(10) [cited 2020 Apr 12]; Available from: https://wwwnc.cdc.gov/eid/article/24/10/18-0862_article.
Galante O, Avni YS, Fuchs L, Ferster OA, Almog Y. Coronavirus NL63-induced adult respiratory distress syndrome. Am J Respir Crit Care Med. 2015;193(1):100–1.
Google Scholar
Green T, Gonzalez AA, Mitchell KD, Navar LG. The complex interplay between COX-2 and angiotensin II in regulating kidney function. Curr Opin Nephrol Hypertens. 2012;21(1):7–14.
CAS
PubMed
PubMed Central
Google Scholar
Kohlstedt K, Busse R, Fleming I. Signaling via the angiotensin-converting enzyme enhances the expression of cyclooxygenase-2 in endothelial cells. Hypertens Dallas Tex 1979. 2005;45(1):126–32.
CAS
Google Scholar
Fara S, Virginia R, Francisco S, Castells MT, Llinás MT, Javier SF. Hypertension and sex differences in the age-related renal changes when Cyclooxygenase-2 activity is reduced during Nephrogenesis. Hypertension. 2009;53(2):331–7.
Google Scholar
Lebedeva ES, Kuzubova NN, Titova ON, Surkova EA. Effect of cyclooxygenase-2 inhibition on lung inflammation and hypoxia-inducible factor-1 signalling in COPD model. Eur Respir J. 2017;50(suppl 61) [cited 2020 Apr 16]. Available from: https://erj.ersjournals.com/content/50/suppl_61/PA3926.
Surjit M, Lal SK. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. Infect Genet Evol J Mol Epidemiol Evol Genet Infect Dis. 2008;8(4):397–405.
CAS
Google Scholar
Gralinski LE, Menachery VD. Return of the coronavirus: 2019-nCoV. Viruses. 2020;12(2):135.
PubMed Central
Google Scholar
Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86(4):1343–6.
CAS
PubMed
PubMed Central
Google Scholar
Buikema H, Pinto YM, Rooks G, Grandjean JG, Schunkert H, van Gilst WH. The deletion polymorphism of the angiotensin-converting enzyme gene is related to phenotypic differences in human arteries. Eur Heart J. 1996;17(5):787–94.
CAS
PubMed
Google Scholar
Marshall RP, Webb S, Bellingan GJ, Montgomery HE, Chaudhari B, McAnulty RJ, et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2002;166(5):646–50.
PubMed
Google Scholar
Itoyama S, Keicho N, Quy T, Phi NC, Long HT, Ha LD, et al. ACE1 polymorphism and progression of SARS. Biochem Biophys Res Commun. 2004;323(3):1124–9.
CAS
PubMed
PubMed Central
Google Scholar
Yende S, Quasney MW, Tolley EA, Wunderink RG. Clinical relevance of angiotensin-converting enzyme gene polymorphisms to predict risk of mechanical ventilation after coronary artery bypass graft surgery*. Read Online Crit Care Med Soc Crit Care Med. 2004;32(4):922–7.
Google Scholar
Jerng J-S, Yu C-J, Wang H-C, Chen K-Y, Cheng S-L, Yang P-C. Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med. 2006;34(4):1001–6.
CAS
PubMed
Google Scholar
Hatami N, Ahi S, Sadeghinikoo A, et al. Worldwide ACE (I/D) polymorphism may affect COVID-19 recovery rate: an ecological meta-regression. Endocrine. 2020;68:479–84. https://doi.org/10.1007/s12020-020-02381-7.
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.
CAS
PubMed
PubMed Central
Google Scholar
Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543–58.
CAS
PubMed
PubMed Central
Google Scholar
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116(6):960–75.
Google Scholar
Gurley SB, Allred A, Le TH, Griffiths R, Mao L, Philip N, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116(8):2218–25.
CAS
PubMed
PubMed Central
Google Scholar
Zamaneh K, Jiuchang Z, Guo D, Ratnadeep B, Wang X, Liu PP, et al. Loss of angiotensin-converting enzyme 2 accelerates maladaptive left ventricular remodeling in response to myocardial infarction. Circ Heart Fail. 2009;2(5):446–55.
Google Scholar
Bonino B, Leoncini G, De Cosmo S, Greco E, Russo GT, Giandalia A, et al. Antihypertensive treatment in diabetic kidney disease: the need for a patient-centered approach. Medicina (Mex). 2019;55(7) [cited 2020 Apr 16]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6681235/.
Bindom SM, Lazartigues E. The sweeter side of ACE2: physiological evidence for a role in diabetes. Mol Cell Endocrinol. 2009;302(2):193–202.
CAS
PubMed
Google Scholar
Oudit GY, Liu GC, Zhong J, Basu R, Chow FL, Zhou J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes. 2010;59(2):529–38.
CAS
PubMed
Google Scholar
Mizuiri S, Hemmi H, Arita M, Ohashi Y, Tanaka Y, Miyagi M, et al. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am J Kidney Dis Off J Natl Kidney Found. 2008;51(4):613–23.
CAS
Google Scholar
White MC, Fleeman R, Arnold AC. Sex differences in the metabolic effects of the renin-angiotensin system. Biol Sex Differ. 2019;10(1):NA-NA.
Google Scholar
Clotet-Freixas S, Soler MJ, Palau V, Anguiano L, Gimeno J, Konvalinka A, et al. Sex dimorphism in ANGII-mediated crosstalk between ACE2 and ACE in diabetic nephropathy. Lab Investig J Tech Methods Pathol. 2018;98(9):1237–49.
CAS
Google Scholar
Davies NG, Klepac P, Liu Y, Prem K, Jit M, Eggo RM. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020;26(8):1205–11.
CAS
PubMed
Google Scholar
Kamo T, Akazawa H, Komuro I. Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int Heart J. 2015;56(3):249–54.
CAS
PubMed
Google Scholar
Oudit G, Kassiri Z, Patel M, Chappell M, Butany J, Backx P, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res. 2007;75(1):29–39.
CAS
PubMed
Google Scholar
Booeshaghi AS, Pachter L. Decrease in ACE2 mRNA expression in aged mouse lung [internet]. Mol Biol. 2020; [cited 2020 Aug 31]. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.04.02.021451.
Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation; 2020. [cited 2020 Apr 5]; Available from: https://www.preprints.org/manuscript/202003.0191/v1.
Google Scholar
Casarini DE, Boim MA, Stella RCR, Schor N. Endopeptidases (kininases) are able to hydrolyze kinins in tubular fluid along the rat nephron. Am J Physiol-Ren Physiol. 1999;277(1):F66–74.
CAS
Google Scholar
Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–43.
CAS
PubMed
Google Scholar
Campanholle G, Landgraf RG, Gonçalves GM, Paiva VN, Martins JO, Wang PHM, et al. Lung inflammation is induced by renal ischemia and reperfusion injury as part of the systemic inflammatory syndrome. Inflamm Res. 2010;59(10):861–9.
CAS
PubMed
Google Scholar
Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R axis and facilitates LPS-induced neutrophil infiltration. Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L17–31.
PubMed
Google Scholar
Perez V, Velarde V, Acuna-Castillo C, Gomez C, Nishimura S, Sabaj V, et al. Increased Kinin levels and decreased responsiveness to Kinins during aging. J Gerontol A Biol Sci Med Sci. 2005;60(8):984–90.
PubMed
Google Scholar
Siltari A, Korpela R, Vapaatalo H. Bradykinin -induced vasodilatation: role of age, ACE1-inhibitory peptide, mas- and bradykinin receptors. Peptides. 2016;85:46–55.
CAS
PubMed
Google Scholar
Mantelli L, Amerini S, Ledda F. Bradykinin-induced vasodilation is changed to a vasoconstrictor response in vessels of aged normotensive and hypertensive rats. Inflamm Res Off J Eur Histamine Res Soc Al. 1995;44(2):70–3.
CAS
Google Scholar
Schmaier AH. The kallikrein-kinin and the renin-angiotensin systems have a multilayered interaction. Am J Physiol-Regul Integr Comp Physiol. 2003;285(1):R1–13.
CAS
PubMed
Google Scholar
Chung HY, Kim HJ, Kim KW, Choi JS, Yu BP. Molecular inflammation hypothesis of aging based on the anti-aging mechanism of calorie restriction. Microsc Res Tech. 2002;59(4):264–72.
CAS
PubMed
Google Scholar
Stewart KG, Yunlong Z, Davidge Sandra T. Aging increases PGHS-2–dependent vasoconstriction in rat mesenteric arteries. Hypertension. 2000;35(6):1242–7.
CAS
PubMed
Google Scholar
Lötvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–60.
PubMed
Google Scholar
Paggi DA, Polack FP. Toward personalized medicine in bronchiolitis. Am J Respir Crit Care Med. 2019;199(12):1456–8.
PubMed
PubMed Central
Google Scholar
Hasegawa K, Dumas O, Hartert TV, Camargo CA Jr. Advancing our understanding of infant bronchiolitis through phenotyping and endotyping: clinical and molecular approaches. Expert Rev Respir Med. 2016;10(8):891–9.
CAS
PubMed
PubMed Central
Google Scholar
Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin–angiotensin–aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;0(0):null.
Google Scholar
Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–10.
CAS
PubMed
Google Scholar
Hamming I, Van Goor H, Turner AJ, Rushworth CA, Michaud AA, Corvol P, et al. Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp Physiol. 2008;93(5):631–8.
CAS
PubMed
Google Scholar
Vuille-dit-Bille RN, Camargo SM, Emmenegger L, Sasse T, Kummer E, Jando J, et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2015;47(4):693–705.
CAS
PubMed
Google Scholar
Rossi GP, Sanga V, Barton M. Potential harmful effects of discontinuing ACE-inhibitors and ARBs in COVID-19 patients. eLife. 9 [cited 2020 Sep 3]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7198232/.
Zhang J, Wang M, Ding W, Wan J. The interaction of RAAS inhibitors with COVID-19: current progress, perspective and future. Life Sci. 2020;257:118142.
CAS
PubMed
PubMed Central
Google Scholar
Albini A, Di Guardo G, Noonan DM, Lombardo M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Intern Emerg Med. 2020;15(5):759–66.
PubMed
PubMed Central
Google Scholar
Calcagnile M, Forgez P, Iannelli A, Bucci C, Alifano M, Alifano P. ACE2 polymorphisms and individual susceptibility to SARS-CoV-2 infection: insights from an in silico study. bioRxiv. 2020;2020.04.23.057042.
KaiserMar. 27 J, 2020, Pm 3:25. How sick will the coronavirus make you? The answer may be in your genes [internet]. Science | AAAS. 2020; [cited 2020 Apr 11]. Available from: https://www.sciencemag.org/news/2020/03/how-sick-will-coronavirus-make-you-answer-may-be-your-genes.
Chakravarty D, Nair SS, Hammouda N, Ratnani P, Gharib Y, Wagaskar V, et al. Sex differences in SARS-CoV-2 infection rates and the potential link to prostate cancer. Commun Biol. 2020;3(1):1–12.
Google Scholar
Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020[cited 2020 Apr 16]; Available from. https://doi.org/10.1007/s12250-020-00207-4.