Skip to main content
Log in

A comprehensive review on Lagenaria siceraria: botanical, medicinal, and agricultural frontiers

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Lagenaria siceraria, commonly known as bottle gourd, stands as a versatile member within the Cucurbitaceae family, offering global economic significance and rich cultural history. This comprehensive review explores diverse dimensions of L. siceraria, spanning its botanical characteristics, historical cultivation, and manifold uses across ornamental, culinary, medicinal, and agricultural domains. The historical cultivation segment traces the origins and distribution of L. siceraria, underlining its early domestication and global dispersion. The ornamental section uncovers artistic and cultural dimensions, while the culinary exploration spans traditional recipes in tropical regions to the resurgence of bottle gourd in contemporary European cuisine. The agricultural application as a rootstock is traced from ancient practices to its modern resurgence, contributing to improved tolerance and yield. The cultivation section offers insights into optimal growth conditions, planting practices, and various factors influencing productivity. In addition, the manuscript delves into the genetic diversity of L. siceraria, and the phytochemical composition at various ripening stages is undertaken, emphasizing the impact on fruit characteristics. Furthermore, this work reviews the isolation methods for extracting key compounds from L. siceraria, evaluating the efficiency of different solvents and procedures. The pharmacological activities of the isolated compounds take center stage, with a specific focus on antimicrobial and antidiabetic properties. The review extends its exploration to potential clinical effectiveness and elucidates possible side effects associated with the consumption of bottle gourd juice, providing essential guidelines for safe utilization. In conclusion, this comprehensive review integrates the botanical, agricultural, and medicinal aspects of L. siceraria, offering a thorough understanding of its significance and potential applications across various domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. WFO (2022) World Flora Online (WFO). http://www.worldfloraonlineorg. Accessed on: 18 Jan 2022.

  2. Decker-Walters DS, Wilkins-Ellert M, Chung SM, Staub JE. Discovery and genetic assessment of wild bottle gourd [Lagenaria siceraria (Mol.) Standley; Cucurbitaceae] from Zimbabwe. Econ Bot. 2004;58(4):501–8. https://doi.org/10.1663/0013-0001(2004)058[0501:Dagaow]2.0.Co;2.

    Article  Google Scholar 

  3. Mabberley DJ. Mabberley’s plant-book: a portable dictionary of plants, their classification and uses. Cambridge University Press. 2008;1021

  4. Attar UA, Ghane SG. Optimized extraction of anti-cancer compound – cucurbitacin I and LC–MS identification of major metabolites from wild Bottle gourd (Lagenaria siceraria (Molina) Standl.). S Afr J Bot. 2018;119:181–7. https://doi.org/10.1016/j.sajb.2018.09.006.

    Article  CAS  Google Scholar 

  5. Roopan SM, Devi Rajeswari V, Kalpana VN, Elango G. Biotechnology and pharmacological evaluation of Indian vegetable crop Lagenaria siceraria: an overview. Appl Microbiol Biotechnol. 2016;100(3):1153–62. https://doi.org/10.1007/s00253-015-7190-0.

    Article  CAS  PubMed  Google Scholar 

  6. Kobiakova JA. The bottle gourd. Bull Appl Bot Gen Plant Breed. 1930;23:475–520.

    Google Scholar 

  7. Burtenshaw M. The first horticultural plant propagated from seed in New Zealand: Lagenaria siceraria. New Zealand Garden J. 2003;6(1):10–6.

    Google Scholar 

  8. Teppner H. Notes on and (Cucurbitaceae) -: review and new contributions. Phyton-Ann Rei Bot A. 2004;44(2):245–308.

    Google Scholar 

  9. Shah BN, Seth AK, Desai RV. Phytopharmacological profile of Lagenaria siceraria: a review. Asian J Plant Sci. 2010;9(3):152–7. https://doi.org/10.3923/ajps.2010.152.157.

    Article  CAS  Google Scholar 

  10. Ahmad I, Irshad M, Rizvi MMA. Nutritional and Medicinal Potential ofLagenaria siceraria. Int J Veg Sci. 2011;17(2):157–70. https://doi.org/10.1080/19315260.2010.526173.

    Article  Google Scholar 

  11. Prajapati RP, Kalariya M, Parmar SK, Sheth NR. Phytochemical and pharmacological review of Lagenaria sicereria. J Ayurveda Integr Med. 2010;1(4):266–72. https://doi.org/10.4103/0975-9476.74431.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ahmed D, Dar P, Chaudhery R, Masih R. Chemical constituents of Lagenaria siceraria mesocarp and its xanthine oxidase and alpha-amylase inhibitory activities. Int J Fruit Sci. 2017;17(3):310–22. https://doi.org/10.1080/15538362.2017.1315628.

  13. Koffi KK, Anzara GK, Malice M, Djè Y, Bertin P, Baudoin JP, Bi IAZ. Morphological and allozyme variation in a collection of Lagenaria siceraria (Molina) Standl. from Côte d’Ivoire. Biotechnol Agron Soc. 2009;13(2):257–70.

    CAS  Google Scholar 

  14. Kumar A, Partap S, Sharma NK, Jha KK. Phytochemical, ethnobotanical and pharmacological profile of Lagenaria siceraria: a review. J Pharmacogn Phytochem. 2012;1(3):24–31.

    CAS  Google Scholar 

  15. Heiser CB. The gourd book. Norman, Okla: University of Oklahoma Press; 1979.

    Google Scholar 

  16. WFO. Lagenaria siceraria (Molina) Standl. World Flora Online (WFO). 2022. http://www.worldfloraonlineorg/taxon/wfo-0000361549. Accessed on: 09 Mar 2022.

  17. Shah BN, Seth AK. Pharmacognostic studies of the Lagenaria siceraria (Molina) Standley. Int J PharmTech Res. 2010;2(1):121–4.

    Google Scholar 

  18. Metcalf RL, Rhodes AM. Coevolution of the Cucurbitaceae and Luperini (Coleoptera: Chrysomelidae): basic and applied aspects. Biology and the Utilisation of the Cucurbitaceae. Ithaca, NY: Cornell University Press; 1990.

    Google Scholar 

  19. Ullah SA, Zafar M, Ahmad M, Ghufran MA, Bursal E, Kilic O, Sultana S, Yaseen G, Khan S, Majeed S. Microscopic implication and evaluation of herbaceous melliferous plants of southern Khyber Pakhtunkhwa-Pakistan using light and scanning electron microscope. Microsc Res Tech. 2021;84(8):1750–64. https://doi.org/10.1002/jemt.23732.

    Article  PubMed  Google Scholar 

  20. The Guinness book of world records. (2022) Stamford, CT :Guinness Media.

  21. Heiser CB. Variation in the bottle gourd. Tropical forest ecosystems in Africa and South America: a comparative review. Washington, D.C.: Smithsonian Institution Press; 1973.

    Google Scholar 

  22. Clarke AC, Burtenshaw MK, McLenachan PA, Erickson DL, Penny D, Investigators ST-NY. Proceedings of the SMBE Tri-National Young Investigators’ Workshop 2005. Reconstructing the origins and dispersal of the Polynesian bottle gourd (Lagenaria siceraria). Mol Biol Evol. 2006;23(5):893–900. https://doi.org/10.1093/molbev/msj092.

    Article  CAS  PubMed  Google Scholar 

  23. Erickson DL, Smith BD, Clarke AC, Sandweiss DH, Tuross N. An Asian origin for a 10,000-year-old domesticated plant in the Americas. Proc Natl Acad Sci U S A. 2005;102(51):18315–20. https://doi.org/10.1073/pnas.0509279102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. N’dri ANA, Zoro BIA, Kouamé LP, Dumet D, Vroh-Bi I. On the dispersal of bottle gourd [Lagenaria siceraria (Mol.) Standl.] out of Africa: a contribution from the analysis of nuclear ribosomal DNA haplotypes, divergent paralogs and variants of 5.8S protein sequences. Plant Mol Biol Rep. 2015;34(2):454–66. https://doi.org/10.1007/s11105-015-0936-0.

    Article  CAS  Google Scholar 

  25. Konan JA, Guyot R, Koffi KK, Vroh-Bi I, Zoro AIB. Molecular confirmation of varietal status in bottle gourd (Lagenaria siceraria) using genotyping-by-sequencing. Genome. 2020;63(11):535–45. https://doi.org/10.1139/gen-2020-0050.

    Article  CAS  PubMed  Google Scholar 

  26. Zoro B, Koffi K, Dje Y, Malice M, Baudoin J-P. Indigenous cucurbits of Côte d’Ivoire: a review of their genetic resources. Sci Nat. 2006;3(1):1–9.

    Google Scholar 

  27. Yetişir H, Şakar M, Serçe S. Collection and morphological characterization of Lagenaria siceraria germplasm from the Mediterranean region of Turkey. Genet Resour Crop Evol. 2008;55(8):1257–66. https://doi.org/10.1007/s10722-008-9325-y.

    Article  Google Scholar 

  28. Fuller DQ, Hosoya LA, Zheng YF, Qin L. A contribution to the prehistory of domesticated bottle gourds in Asia: rind measurements from Jomon Japan and Neolithic Zhejiang, China. Econ Bot. 2010;64(3):260–5. https://doi.org/10.1007/s12231-010-9122-3.

    Article  Google Scholar 

  29. Harris DR. New light on plant domestication and the origins of agriculture: a review. Geogr Rev. 1967;57(1):90–107. https://doi.org/10.2307/212761.

    Article  Google Scholar 

  30. Piperno DR, Andres TC, Stothert KE. Phytoliths in Cucurbita and other neotropical Cucurbitaceae and their occurrence in Early Archaeological Sites from the Lowland American Tropics. J Archaeol Sci. 2000;27(3):193–208. https://doi.org/10.1006/jasc.1999.0443.

    Article  Google Scholar 

  31. Decker-Walters D, Staub J, López-Sesé A, Nakata E. Diversity in landraces and cultivars of bottle gourd (Lagenaria siceraria; Cucurbitaceae) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol. 2001;48(4):369–80. https://doi.org/10.1023/A:1012079323399.

    Article  Google Scholar 

  32. Smith BD. Reassessing Coxcatlan Cave and the early history of domesticated plants in Mesoamerica. Proc Natl Acad Sci U S A. 2005;102(27):9438–45. https://doi.org/10.1073/pnas.0502847102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kistler L, Montenegro A, Smith BD, Gifford JA, Green RE, Newsom LA, Shapiro B. Transoceanic drift and the domestication of African bottle gourds in the Americas. Proc Natl Acad Sci U S A. 2014;111(8):2937–41. https://doi.org/10.1073/pnas.1318678111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schweinfurth G. Further discoveries in the Flora of Ancient Egypt. Nature. 1884;29(744):312–5. https://doi.org/10.1038/029312b0.

    Article  Google Scholar 

  35. Fagan B. Hunter-gatherers at Gwisho. Boston: Little, Brown, and Company; 1970.

    Google Scholar 

  36. MacNeish RS, Nelkin-Terner AN, Cook AG. The second annual report of the Ayacucho archaeological-botanical project. Andover, MA: R. S. Peabody Foundation for Archaeology; 1970.

    Google Scholar 

  37. Leach H. 1,000 years of gardening in New Zealand. Wellington, New Zealand: A. H. & A. W. Reed; 1984.

    Google Scholar 

  38. Bose TK, Som MG. Vegetable crops in India. Calcatta, India: Naya Prokash; 1986.

    Google Scholar 

  39. Chang K-C. The archaeology of ancient China. New Haven, Conn: Yale University Press; 1986.

    Google Scholar 

  40. Imamura K. Prehistoric Japan: new perspectives on insular East Asia. London: UCL Press; 1996.

    Google Scholar 

  41. Green RC. A range of disciplines support a dual origin for the bottle gourd in the Pacific. J Polynesian Soc. 2000;109(2):191–7.

    Google Scholar 

  42. Burney DA, James HF, Burney LP, Olson SL, Kikuchi W, Wagner WL, Burney M, McCloskey D, Kikuchi D, Grady FV, Gage R, Nishek R. Fossil evidence for a diverse biota from Kaua’i and its transformation since human arrival. Ecol Monogr. 2001;71(4):615–41. https://doi.org/10.1890/0012-9615(2001)071[0615:Fefadb]2.0.Co;2.

    Article  Google Scholar 

  43. Habu J, Kim M, Katayama M, Komiya H. Jomon subsistence-settlement systems at the Sannai Maruyama site. Indo-Pacific prehistory: the Melaka papers. Canberra, Australia: Australian National University; 2001.

    Google Scholar 

  44. Horrocks M, Jones MD, Beever RE, Sutton DG. Analysis of plant microfossils in prehistoric coprolites from Harataonga Bay, Great Barrier Island, New Zealand. J Roy Soc New Zeal. 2002;32(4):617–28. https://doi.org/10.1080/03014223.2002.9517712.

    Article  Google Scholar 

  45. Schlumbaum A, Vandorpe P. A short history of Lagenaria siceraria (bottle gourd) in the Roman provinces: morphotypes and archaeogenetics. Veg Hist Archaeobot. 2012;21(6):499–509. https://doi.org/10.1007/s00334-011-0343-x.

    Article  Google Scholar 

  46. Pető Á, Kenéz Á, Lisztes-Szabó Z, Sramkó G, Laczkó L, Molnár M, Bóka G. The first archaeobotanical evidence of Lagenaria siceraria from the territory of Hungary: histology, phytoliths and (a)DNA. Veg Hist Archaeobot. 2016;26(1):125–42. https://doi.org/10.1007/s00334-016-0566-y.

    Article  Google Scholar 

  47. Roxburgh W. Descriptions of Indian plants. William Carey. Origin of the original: Lyon Public Library. 1832;3:875

  48. DeCandolle A. Origin of cultivated plants. New York & London: Halher Publishing Company; 1967.

    Google Scholar 

  49. Whitaker T. Endemism and pre-Columbian migration of bottle gourd, Lagenaria siceraria (Mol.) Standl. In: Riley C, Kelley J, Pennington C, Runds R, editors. Man across the sea. Austin: University of Texas Pres; 1971. p. 78–218.

    Google Scholar 

  50. Whitaker TW, Carter GF. Oceanic drift of gourds—experimental observations. Am J Bot. 1954;41(9):697–700. https://doi.org/10.1002/j.1537-2197.1954.tb14397.x.

    Article  Google Scholar 

  51. Xu P, Wu X, Luo J, Wang B, Liu Y, Ehlers JD, Wang S, Lu Z, Li G. Partial sequencing of the bottle gourd genome reveals markers useful for phylogenetic analysis and breeding. BMC Genomics. 2011;12(1):467. https://doi.org/10.1186/1471-2164-12-467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Burtenshaw MK. Maori gourds: an American connection? J Polynesian Soc. 1999;108:427–33.

    Google Scholar 

  53. Mladenovic E, Berenji J, Ognjanov V, Ljubojevic M, Cukanovic J. Genetic variability of bottle gourd Lagenaria siceraria (Mol.) Standley and its morphological characterization by multivariate analysis. Arch Biol Sci. 2012;64(2):573–83. https://doi.org/10.2298/Abs1202573m.

    Article  Google Scholar 

  54. Yetişir H, Gürcan K, Taş A, Denli N (2012) Bottle gourd germplasm collection in Turkey. In: Sari N, Solmaz I, Aras V (eds.) Proceedings of the X EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Antalya, Turkey, pp 643-651. https://doi.org/10.5281/zenodo.1255624.

  55. Gürcan K, Say A, Yetişir H, Denli N. A study of genetic diversity in bottle gourd [Lagenaria siceraria (Molina) Standl.] population, and implication for the historical origins on bottle gourds in Turkey. Gen Resour Crop Evol. 2015;62(3):321–33. https://doi.org/10.1007/s10722-015-0224-8.

    Article  CAS  Google Scholar 

  56. Gourd Society of America. Gourds. Their culture and craft. Mount Gilead, Ohio, USA: The Gourd Society of America Inc.; 1976.

    Google Scholar 

  57. Achigan-Dako EG, Fuchs J, Ahanchede A, Blattner FR. Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Syst Evol. 2008;276(1–2):9–19. https://doi.org/10.1007/s00606-008-0075-2.

    Article  CAS  Google Scholar 

  58. Mashilo J, Shimelis HA, Odindo AO, Amelework BA. Genetic differentiation of bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by fruit qualitative traits and simple sequence repeat markers. Sci Hortic-Amsterdam. 2017;216:1–11. https://doi.org/10.1016/j.scienta.2016.12.022.

    Article  CAS  Google Scholar 

  59. Mashilo J, Shimelis H, Ngwepe RM. Genetic resources of bottle gourd (Lagenaria siceraria (Molina) Standl.] and citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.)- implications for genetic improvement, product development and commercialization: a review. S Afr J Bot. 2022;145:28–47. https://doi.org/10.1016/j.sajb.2021.10.013.

    Article  CAS  Google Scholar 

  60. Mkhize P, Mashilo J, Shimelis H. Progress on genetic improvement and analysis of bottle gourd [Lagenaria siceraria (Molina) Standl.] for agronomic traits, nutrient compositions, and stress tolerance: a review. Front Sustain Food S. 2021;5:683635. https://doi.org/10.3389/fsufs.2021.683635.

    Article  Google Scholar 

  61. Tateishi K. Grafting watermelon onto pumpkin. J Jpn Hortic. 1927;39:5–8.

    Google Scholar 

  62. Sato N, Takamatsu T. Grafting culture of watermelon. Nogyo Sekai. 1930;25:24–8.

    Google Scholar 

  63. Murata J, Ohara K. Prevention of watermelon fusarium wilt by grafting Lagenaria. Jpn J Phytopathol. 1936;6:183–9.

    Google Scholar 

  64. Balaž F. Grafting watermelon varieties on Lagenaria vulgaris to prevent Fusarium wilt. Contemp Agric. 1982;30(11–12):563–8.

    Google Scholar 

  65. Lee J-M, Oda M. Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews. New York, NY: John Wiley & Sons; 2003.

    Google Scholar 

  66. Davis AR, Perkins-Veazie P, Sakata Y, López-Galarza S, Maroto JV, Lee SG, Huh YC, Sun ZY, Miguel A, King SR, Cohen R, Lee JM. Cucurbit grafting. Crit Rev Plant Sci. 2008;27(1):50–74. https://doi.org/10.1080/07352680802053940.

    Article  Google Scholar 

  67. Kubota C, McClure MA, Kokalis-Burelle N, Bausher MG, Rosskopf EN. Vegetable grafting: history, use, and current technology status in North America. HortScience. 2008;43(6):1664–9. https://doi.org/10.21273/Hortsci.43.6.1664.

    Article  Google Scholar 

  68. Melnyk CW, Meyerowitz EM. Plant grafting. Curr Biol. 2015;25(5):R183-188. https://doi.org/10.1016/j.cub.2015.01.029.

    Article  CAS  PubMed  Google Scholar 

  69. Devi P, Lukas S, Miles C. Advances in watermelon grafting to increase efficiency and automation. Horticulturae. 2020;6(4):88. https://doi.org/10.3390/horticulturae604008810.3390/horticulturae6040088.

    Article  Google Scholar 

  70. Yetişir H, Kurt S, Sari N, Tok F. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth graft compatibility, and resistance to Fusarium. Turk J Agric For. 2007;31(6):381–8.

    Google Scholar 

  71. Yetışır H, Sari N, Yücel S. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica. 2003;31(2):163–9. https://doi.org/10.1007/BF02980786.

    Article  Google Scholar 

  72. Kijima J. Watermelon grafting using bottle gourd rootstock. J Okitsu Hort Soc. 1933;29:111–5.

    Google Scholar 

  73. Provvidenti R. A multi-viral resistant cultivar of bottle gourd (Lagenaria siceraria) from Taiwan. Cucurbit Gen Coop Rep. 1995;18:65–7.

    Google Scholar 

  74. Ling KS, Levi A. Sources of resistance to zucchini yellow mosaic virus in Lagenaria siceraria Germplasm. HortScience. 2007;42(5):1124–6. https://doi.org/10.21273/Hortsci.42.5.1124.

    Article  Google Scholar 

  75. Sakata Y, Ohara T, Sugiyama M. The history and present state of the grafting of Cucurbitaceous vegetables in Japan. Acta Hort. 2007;731(731):159–70. https://doi.org/10.17660/ActaHortic.2007.731.22.

    Article  Google Scholar 

  76. Keinath AP, Hassell RL. Control of Fusarium wilt of watermelon by grafting onto bottlegourd or interspecific hybrid squash despite colonization of rootstocks by Fusarium. Plant Dis. 2014;98(2):255–66. https://doi.org/10.1094/PDIS-01-13-0100-RE.

    Article  CAS  PubMed  Google Scholar 

  77. Yang Y, Yu L, Wang L, Guo S. Bottle gourd rootstock-grafting promotes photosynthesis by regulating the stomata and non-stomata performances in leaves of watermelon seedlings under NaCl stress. J Plant Physiol. 2015;186–187:50–8. https://doi.org/10.1016/j.jplph.2015.07.013.

    Article  CAS  PubMed  Google Scholar 

  78. Mashilo J, Odindo AO, Shimelis HA, Musenge P, Tesfay SZ, Magwaza LS. Drought tolerance of selected bottle gourd [Lagenaria siceraria (Molina) Standl.] landraces assessed by leaf gas exchange and photosynthetic efficiency. Plant Physiol Biochem. 2017;120:75–87. https://doi.org/10.1016/j.plaphy.2017.09.022.

    Article  CAS  PubMed  Google Scholar 

  79. Zhong Y, Chen C, Nawaz MA, Jiao Y, Zheng Z, Shi X, Xie W, Yu Y, Guo J, Zhu S, Xie M, Kong Q, Cheng F, Bie Z, Huang Y. Using rootstock to increase watermelon fruit yield and quality at low potassium supply: a comprehensive analysis from agronomic, physiological and transcriptional perspective. Sci Hortic-Amsterdam. 2018;241:144–51. https://doi.org/10.1016/j.scienta.2018.06.091.

    Article  CAS  Google Scholar 

  80. Çandir E. Phytochemical characteristics of grafted watermelon on different bottle gourds (Lagenaria siceraria) collected from Mediterranean region of Turkey. Turk J Agric Fore. 2013;37(4):443–56. https://doi.org/10.3906/tar-1207-21.

    Article  CAS  Google Scholar 

  81. Huang Y, Zhao L, Kong Q, Cheng F, Niu M, Xie J, Muhammad Azher N, Bie Z. Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Horticult Plant J. 2016;2(2):105–13. https://doi.org/10.1016/j.hpj.2016.06.003.

    Article  Google Scholar 

  82. Garcia-Lozano M, Dutta SK, Natarajan P, Tomason YR, Lopez C, Katam R, Levi A, Nimmakayala P, Reddy UK. Transcriptome changes in reciprocal grafts involving watermelon and bottle gourd reveal molecular mechanisms involved in increase of the fruit size, rind toughness and soluble solids. Plant Mol Biol. 2020;102(1–2):213–23. https://doi.org/10.1007/s11103-019-00942-7.

    Article  CAS  PubMed  Google Scholar 

  83. Liao CT, Lin CH. Photosynthetic responses of grafted bitter melon seedlings to flood stress. Environ Exp Bot. 1996;36(2):167–72. https://doi.org/10.1016/0098-8472(96)01009-X.

    Article  Google Scholar 

  84. Davis AR, Perkins-Veazie P. Rootstock effects on plant vigor and watermelon fruit quality. Cucurbit Gen Coop Rpt. 2005;28–29:39–42.

    Google Scholar 

  85. Liu HY, Zhu ZJ, Diao M, Guo ZP. Characteristics of the sugar metabolism in leaves and fruits of grafted watermelon during fruit development. Plant Physiol Commun. 2006;42(5):835–40.

    Google Scholar 

  86. Rouphael Y, Schwarz D, Krumbein A, Colla G. Impact of grafting on product quality of fruit vegetables. Sci Hortic-Amsterdam. 2010;127(2):172–9. https://doi.org/10.1016/j.scienta.2010.09.001.

    Article  Google Scholar 

  87. Fallik E, Ziv C. How rootstock/scion combinations affect watermelon fruit quality after harvest? J Sci Food Agric. 2020;100(8):3275–82. https://doi.org/10.1002/jsfa.10325.

    Article  CAS  PubMed  Google Scholar 

  88. Suárez-Hernández AM, Grimaldo-Juárez O, Ceceña-Durán C, Vázquez-Angulo JC, Carrazco-Peña LD, Avendaño-Reyes L, Ail-Catzim CE, Basilio-Cortes UA, Angulo-Castro A. Influence of seed and fruit characteristics of Lagenaria siceraria on production and quality of grafted watermelon. Horticulturae. 2022;8 (3). https://doi.org/10.3390/horticulturae8030242

  89. Xiong M, Liu C, Guo L, Wang J, Wu X, Li L, Bie Z, Huang Y. Compatibility evaluation and anatomical observation of melon grafted onto eight Cucurbitaceae species. Front Plant Sci. 2021;12:762889. https://doi.org/10.3389/fpls.2021.762889.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Aloni B, Cohen R, Karni L, Aktas H, Edelstein M. Hormonal signaling in rootstock-scion interactions. Sci Hortic-Amsterdam. 2010;127(2):119–26. https://doi.org/10.1016/j.scienta.2010.09.003.

    Article  CAS  Google Scholar 

  91. Karaağaç O, Balkaya A. Interspecific hybridization and hybrid seed yield of winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.) lines for rootstock breeding. Sci Hortic-Amsterdam. 2013;149:9–12. https://doi.org/10.1016/j.scienta.2012.10.021.

    Article  Google Scholar 

  92. Kong QS, Chen JL, Liu Y, Ma YH, Liu P, Wu SY, Huang Y, Bie ZL. Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers. Sci Hortic-Amsterdam. 2014;175:150–5. https://doi.org/10.1016/j.scienta.2014.06.009.

    Article  CAS  Google Scholar 

  93. Edelstein M, Cohen R, Gur A, Elkabetz M, Pivonia S, Grosch R, Forster P, Schwarz D. Performance of interspecific Cucurbita rootstocks compared to their parental lines. Sci Hortic-Amsterdam. 2017;216:45–50. https://doi.org/10.1016/j.scienta.2016.12.031.

    Article  Google Scholar 

  94. Mahmud I, Kousik C, Hassell R, Chowdhury K, Boroujerdi AF. NMR spectroscopy identifies metabolites translocated from powdery mildew resistant rootstocks to susceptible watermelon scions. J Agric Food Chem. 2015;63(36):8083–91. https://doi.org/10.1021/acs.jafc.5b02108.

    Article  CAS  PubMed  Google Scholar 

  95. Kong Q, Yuan J, Gao L, Liu P, Cao L, Huang Y, Zhao L, Lv H, Bie Z. Transcriptional regulation of lycopene metabolism mediated by rootstock during the ripening of grafted watermelons. Food Chem. 2017;214:406–11. https://doi.org/10.1016/j.foodchem.2016.07.103.

    Article  CAS  PubMed  Google Scholar 

  96. Mashilo J, Odindo AO, Shimelis HA, Musenge P, Tesfay SZ, Magwaza LS. Photosynthetic response of bottle gourd [Lagenaria siceraria (Molina) Standl.] to drought stress: relationship between cucurbitacins accumulation and drought tolerance. Sci Hortic-Amsterdam. 2018;231:133–43. https://doi.org/10.1016/j.scienta.2017.12.027.

    Article  CAS  Google Scholar 

  97. Ren Y, Guo SR, Shu S, Xu Y, Sun J. Isolation and expression pattern analysis of CmRNF5 and CmNPH3L potentially involved in graft compatibility in cucumber/pumpkin graft combinations. Sci Hortic-Amsterdam. 2018;227:92–101. https://doi.org/10.1016/j.scienta.2017.09.022.

    Article  CAS  Google Scholar 

  98. Miao L, Li SZ, Bai LQ, Anwar A, Li YS, He CX, Yu XC. Effect of grafting methods on physiological change of graft union formation in cucumber grafted onto bottle gourd rootstock. Sci Hortic-Amsterdam. 2019;244:249–56. https://doi.org/10.1016/j.scienta.2018.09.061.

    Article  CAS  Google Scholar 

  99. Kaseb MO, Umer MJ, Anees M, Zhu H, Zhao S, Lu X, He N, El-Remaly E, El-Eslamboly A, Yousef AF, Salama EAA, Alrefaei AF, Kalaji HM, Liu W. Transcriptome profiling to dissect the role of genome duplication on graft compatibility mechanisms in watermelon. Biology (Basel). 2022;11(4):575. https://doi.org/10.3390/biology11040575.

    Article  CAS  PubMed  Google Scholar 

  100. Sugiyama K, Kami D, Muro T. Induction of parthenocarpic fruit set in watermelon by pollination with bottle gourd (Lagenaria siceraria (Molina) Standl.) pollen. Sci Hortic-Amsterdam. 2014;171:1–5. https://doi.org/10.1016/j.scienta.2014.03.008.

    Article  Google Scholar 

  101. Sugiyama K, Shimura H, Kami D, Murata N, Yoshida M, Suzuka A, Nagaoka K, Jitsuyama Y, Suzuki T. Phylogenetic analyses and agronomical characteristics on parthenocarpy in different Cucurbitaceae genera using cross-pollination. Sci Hortic-Amsterdam. 2021;289:110210. https://doi.org/10.1016/j.scienta.2021.110210.

    Article  CAS  Google Scholar 

  102. Abasaheb RN, Swati SS, Gajanan LB, Namdeo BA, Sambhaji DS, Vaishali VG. Rapid biosynthesis of silver nanoparticles using bottle gourd fruit extract and potential application as bactericide. Res Pharm. 2013;3(3):22–8.

    Google Scholar 

  103. Anandh B, Muthuvel A, Emayavaramban M. Bio synthesis and characterization of silver nanoparticles using <i>Lagenaria siceraria</i> leaf extract and their antibacterial activity. Int Lett Chem Phys Astron. 2014;38:35–45. https://doi.org/10.56431/p-9bny9r.

    Article  Google Scholar 

  104. Kanagasubbulakshmi S, Kadirvelu K. Green synthesis of Iron oxide nanoparticles using Lagenaria siceraria and evaluation of its antimicrobial activity. Def Life Sci J. 2017;2(4):422–7. https://doi.org/10.14429/dlsj.2.12277.

    Article  Google Scholar 

  105. Kalpana VN, Alarjani KM, Rajeswari VD. Enhancing malaria control using Lagenaria siceraria and its mediated zinc oxide nanoparticles against the vector Anopheles stephensi and its parasite Plasmodium falciparum. Sci Rep. 2020;10(1):21568. https://doi.org/10.1038/s41598-020-77854-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kalpana VN, Rajeswari VD. Synthesis of palladium nanoparticles via a green route using Lagenaria siceraria: assessment of their innate antidandruff, insecticidal and degradation activities. Mater Res Express. 2018;5(11):115406. https://doi.org/10.1088/2053-1591/aaddef.

    Article  CAS  Google Scholar 

  107. Kaur H, Kaur S, Kumar S, Singh J, Rawat M. Eco-friendly green synthesis approach and evaluation of environmental and biological applications of iron oxide nanoparticles. J Clust Sci. 2021;32(5):1191–204. https://doi.org/10.1007/s10876-020-01881-w.

    Article  CAS  Google Scholar 

  108. Meda RS, Jain S, Singh S, Verma C, Nandi U, Maji PK. Novel Lagenaria siceraria peel waste based cellulose nanocrystals: isolation and rationalizing H-bonding interactions. Ind Crop Prod. 2022;186:115197. https://doi.org/10.1016/j.indcrop.2022.115197.

    Article  CAS  Google Scholar 

  109. Shah BN, Seth AK, Nayak BS. Microwave assisted isolation of mucilage from the fruits of Lagenaria siceraria. Pharm Lett. 2010;2(2):202–5.

    CAS  Google Scholar 

  110. Sokoto MA, Hassan LG, Salleh SE, Dangoggo SM, Ahmad HG. Quality assessment and optimization of biodiesel from Lagenaria vulgaris (calabash) seeds oil. Int J Pure Appl Sci Technol. 2013;15:55–66.

    CAS  Google Scholar 

  111. Umar A, Uba A, Mohammed M, Almustapha M, Muhammad C, Sani J. Microwave assisted biodiesel production from Lagenaria vulgaris seed oil using amberlyst 15 ion exchange resin and eggshell as catalysts. Niger J Basic Appl Sci. 2018;26(2):88–96. https://doi.org/10.4314/njbas.v26i2.13.

    Article  Google Scholar 

  112. Minocha S, Tiwari A, Gandhi S, Sharma A, Gupta AK. An overview on Lagenaria siceraria (bottle gourd). J Biomed Pharm Res. 2015;4(3):4–10.

    CAS  Google Scholar 

  113. Abbas M, Arshad M, Nisar N, Nisar J, Ghaffar A, Nazir A, Asif Tahir M, Iqbal M. Muscilage characterization, biochemical and enzymatic activities of laser irradiated Lagenaria siceraria seedlings. J Photochem Photobiol B. 2017;173:344–52. https://doi.org/10.1016/j.jphotobiol.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  114. Kabiraj J, Das SP, Priya A, Mandal AR, Das R. Evaluation of integrated nutrient management on the performance of bottle gourd [Lagenaria siceraria (Molina) Standl.]. J Appl Nat Sci. 2015;7(1):18–25. https://doi.org/10.31018/jans.v7i1.557.

    Article  Google Scholar 

  115. Coulibaly SS, Tondoh JE, Kouassi KI, Barsan N, Nedeff V, Zoro BIA. Vermicomposts improve yields and seeds quality of Lagenaria siceraria in Côte d’Ivoire. Int J Agron Agric Res. 2016;8(3):26–37.

    Google Scholar 

  116. Mubarak I, Janat M. Bottle gourd (Lagenaria siceraria L.) crop response to different planting densities under both drip and widespaced furrow irrigation methods. Agraarteadus: J Agric Sci. 2021;32(1):79–85. https://doi.org/10.15159/jas.21.11.

    Article  Google Scholar 

  117. Doubi BTS, Kouassi KI, Kouakou KL, Koffi KK, Baudoin JP, Zoroa BIA. Existing competitive indices in the intercropping system of Manihot esculenta Crantz and Lagenaria siceraria (Molina) Standley. J Plant Interact. 2016;11(1):178–85. https://doi.org/10.1080/17429145.2016.1266042.

    Article  Google Scholar 

  118. Ahmed MS, Salem EA, Helaly AA. Impact of mycorrhizae and polyethylene mulching on growth, yield and seed oil production of bottle gourd (Lagenaria siceraria). J Horticult Sci Ornament Plants. 2017;9(1):28–38. https://doi.org/10.5829/idosi.jhsop.2017.28.38.

    Article  CAS  Google Scholar 

  119. Loukou AL, Lognay G, Barthelemy JP, Maesen P, Baudoin JP, Zoro BI. Effect of harvest time on seed oil and protein contents and compositions in the oleaginous gourd Lagenaria siceraria (Molina) Standl. J Sci Food Agric. 2011;91(11):2073–80. https://doi.org/10.1002/jsfa.4422.

    Article  CAS  PubMed  Google Scholar 

  120. Gnigouan KGRA, Kouam eacute KK, Sifolo SC, Bi NDF, Jean Pierre B, Claudine C, IeAZ Bi. Influence of herbivorous insects on the production of Lagenaria siceraria (Molina) Standley (Cucurbitaceae). Afr J Plant Sci. 2015;9(11):449–56. https://doi.org/10.5897/ajps2015.1316.

    Article  CAS  Google Scholar 

  121. Sakar M. Characterization of bottle gourd (Lagenaria siceraria) genotypes collected from Mediterranean region. University of Mustafa Kemal, Institute of Natural and Applied Science Master Thesis (Hatay). 2004; 74.

  122. Husna A, Mahmud F, Islam MR, Mahmud MAA, Ratna M. Genetic variability, correlation and path coefficient analysis in bottle gourd (Lagenaria siceraria L.). Adv Biol Res. 2011;5(6):323–7.

    CAS  Google Scholar 

  123. Morimoto Y, Maundu P, Kawase M, Fujimaki H, Morishima H. RAPD polymorphism of the white-flowered gourd (Lagenaria siceraria (Molina) Standl. landraces and its wild relatives in Kenya. Gen Resour Crop Evol. 2005;53(5):963–74. https://doi.org/10.1007/s10722-004-7070-4.

    Article  CAS  Google Scholar 

  124. Contreras-Soto R, Salvatierra A, Maldonado C, Mashilo J. The genetic diversity and population structure of different geographical populations of bottle gourd (Lagenaria siceraria) accessions based on genotyping-by-sequencing. Agronomy-Basel. 2021;11(8):1677. https://doi.org/10.3390/agronomy11081677.

    Article  CAS  Google Scholar 

  125. Mashilo J, Shimelis H, Odindo A. Genetic diversity of bottle gourd (Lagenaria siceraria(Molina) Standl.) landraces of South Africa assessed by morphological traits and simple sequence repeat markers. South Afr J Plant Soil. 2015;33(2):113–24. https://doi.org/10.1080/02571862.2015.1090024.

    Article  Google Scholar 

  126. Ghule BV, Ghante MH, Saoji AN, Yeole PG. Antihyperlipidemic effect of the methanolic extract from Lagenaria siceraria Stand. fruit in hyperlipidemic rats. J Ethnopharmacol. 2009;124(2):333–7. https://doi.org/10.1016/j.jep.2009.04.040.

    Article  CAS  PubMed  Google Scholar 

  127. Rajput MS, Balekar N, Jain DK. Inhibition of ADP-induced platelet aggregation and involvement of non-cellular blood chemical mediators are responsible for the antithrombotic potential of the fruits of Lagenaria siceraria. Chin J Nat Med. 2014;12(8):599–606. https://doi.org/10.1016/S1875-5364(14)60091-1.

    Article  CAS  PubMed  Google Scholar 

  128. Wu S, Shamimuzzaman M, Sun H, Salse J, Sui X, Wilder A, Wu Z, Levi A, Xu Y, Ling KS, Fei Z. The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring-spot virus resistance locus. Plant J. 2017;92(5):963–75. https://doi.org/10.1111/tpj.13722.

    Article  CAS  PubMed  Google Scholar 

  129. Singh AK. Cytogenetics and evolution in the Cucurbitaceae. Biology and the Utilisation of the Cucurbitaceae. Ithaca, NY: Cornell University Press; 1990.

    Google Scholar 

  130. Srivastava D, Khan NA, Shamim M, Yadav P, Pandey P, Singh KN. Assessment of the genetic diversity in bottle gourd (Lagenaria siceraria [Molina] Standl.) genotypes using SDS-PAGE and RAPD markers. Natl Acad Sci Lett. 2014;37(2):155–61. https://doi.org/10.1007/s40009-013-0207-2.

    Article  Google Scholar 

  131. Bhawna AMZ, Arya L, Ram C, Sureja AK, Verma M. Development of novel gene-based microsatellite markers for robust genotyping purposes in. Sci Hortic-Amsterdam. 2015;191:15–24. https://doi.org/10.1016/j.scienta.2015.05.006.

    Article  CAS  Google Scholar 

  132. Levi A, Thies J, Ling K-s, Simmons AM, Kousik C, Hassell R. Genetic diversity among Lagenaria siceraria accessions containing resistance to root-knot nematodes, whiteflies, ZYMV or powdery mildew. Plant Genetic Resources. 2009;7(03):216–26. https://doi.org/10.1017/s1479262109225354.

    Article  CAS  Google Scholar 

  133. Bhawna, Abdin MZ, Arya L, Saha D, Sureja AK, Pandey C, Verma M. Population structure and genetic diversity in bottle gourd [(Mol.) Standl.] germplasm from India assessed by ISSR markers. Plant Syst Evol. 2014;300(4):767–73. https://doi.org/10.1007/s00606-014-1000-5.

    Article  Google Scholar 

  134. Ibrahim EA. Genetic diversity in Egyptian bottle gourd genotypes based on ISSR markers. Ecol Genet Genom. 2021;18:100079. https://doi.org/10.1016/j.egg.2021.100079.

    Article  CAS  Google Scholar 

  135. Zhang H, Zhang MIN, Tan JIE, Huang S, Zhou G, Chen XIA. Transcriptome based high-throughput SSRs and SNPs discovery in the medicinal plant Lagenaria siceraria. Biocell. 2021;45(2):371–86. https://doi.org/10.32604/biocell.2021.013869.

    Article  CAS  Google Scholar 

  136. Yildiz M, Cuevas HE, Sensoy S, Erdinc C, Baloch FS. Transferability of Cucurbita SSR markers for genetic diversity assessment of Turkish bottle gourd (Lagenaria siceraria) genetic resources. Biochem Syst Ecol. 2015;59:45–53. https://doi.org/10.1016/j.bse.2015.01.006.

    Article  CAS  Google Scholar 

  137. Wu X, Wu X, Wang Y, Wang B, Lu Z, Xu P, Li G. Molecular genetic mapping of two complementary genes underpinning fruit bitterness in the bottle gourd (Lagenaria siceraria [Mol.] Standl.). Front Plant Sci. 2019;10:1493. https://doi.org/10.3389/fpls.2019.01493.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wang Y, Xu P, Wu X, Wu X, Wang B, Huang Y, Hu Y, Lin J, Lu Z, Li G. GourdBase: a genome-centered multi-omics database for the bottle gourd (Lagenaria siceraria), an economically important cucurbit crop. Sci Rep. 2018;8(1):3604. https://doi.org/10.1038/s41598-018-22007-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Song H, Huang Y, Gu B. QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria). PLoS ONE. 2020;15(11):e0227663. https://doi.org/10.1371/journal.pone.0227663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Saeed M, Khan MS, Amir K, Bi JB, Asif M, Madni A, Kamboh AA, Manzoor Z, Younas U, Chao S. Lagenaria siceraria fruit: a review of its phytochemistry, pharmacology, and promising traditional uses. Front Nutr. 2022;9:927361. https://doi.org/10.3389/fnut.2022.927361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Garg S, Kaul SC, Wadhwa R. Cucurbitacin B and cancer intervention: chemistry, biology and mechanisms (Review). Int J Oncol. 2018;52(1):19–37. https://doi.org/10.3892/ijo.2017.4203.

    Article  CAS  PubMed  Google Scholar 

  142. Mak K-K, Shiming Z, Balijepalli MK, Dinkova-Kostova AT, Epemolu O, Mohd Z, Pichika MR. Studies on the mechanism of anti-inflammatory action of swietenine, a tetranortriterpenoid isolated from Swietenia macrophylla seeds. Phytomedicine Plus. 2021;1(1):100018. https://doi.org/10.1016/j.phyplu.2020.100018.

    Article  Google Scholar 

  143. Choi JM, Lee EO, Lee HJ, Kim KH, Ahn KS, Shim BS, Kim NI, Song MC, Baek NI, Kim SH. Identification of campesterol from Chrysanthemum coronarium L. and its antiangiogenic activities. Phytother Res. 2007;21(10):954–9. https://doi.org/10.1002/ptr.2189.

    Article  CAS  PubMed  Google Scholar 

  144. Boskou D, Morton ID. Effect of plant sterols on the rate of deterioration of heated oils. J Sci Food Agric. 2006;27(10):928–32. https://doi.org/10.1002/jsfa.2740271006.

    Article  Google Scholar 

  145. Kajal A, Singh R. Modulation of advanced glycation end products, sorbitol, and aldose reductase by hydroalcohol extract of Lagenaria siceraria Mol Standl in diabetic complications: an in vitro approach. J Diet Suppl. 2018;15(4):482–98. https://doi.org/10.1080/19390211.2017.1356419.

    Article  CAS  PubMed  Google Scholar 

  146. Elufioye TO, Oyedeji AO, Habtemariam S. A review of the traditional uses, phytochemistry and pharmacology of Bryophyllum pinnatum (Lam.) (Crassulaceae). J Biol Act Prod Nat. 2022;12(3):190–222. https://doi.org/10.1080/22311866.2021.1988706.

    Article  CAS  Google Scholar 

  147. Meneses-Sagrero SE, Navarro-Navarro M, Ruiz-Bustos E, Del-Toro-Sanchez CL, Jimenez-Estrada M. Robles-Zepeda RE (2017) Antiproliferative activity of spinasterol isolated of Stegnosperma halimifolium (Benth. Saudi Pharm J. 1844;25(8):1137–43. https://doi.org/10.1016/j.jsps.2017.07.001.

    Article  Google Scholar 

  148. Kim KB, Kim MJ, Ahn DH. Lipase inhibitory activity of chlorophyll a, isofucosterol and saringosterol isolated from chloroform fraction of Sargassum thunbergii. Nat Prod Res. 2014;28(16):1310–2. https://doi.org/10.1080/14786419.2014.900769.

    Article  CAS  PubMed  Google Scholar 

  149. Winkler JK, Warner K. Effect of phytosterol structure on thermal polymerization of heated soybean oil. Eur J Lipid Sci Tech. 2008;110(11):1068–77. https://doi.org/10.1002/ejlt.200800089.

    Article  CAS  Google Scholar 

  150. Praveena R, Sadasivam K, Deepha V, Sivakumar R. Antioxidant potential of orientin: a combined experimental and DFT approach. J Mol Struct. 2014;1061:114–23. https://doi.org/10.1016/j.molstruc.2014.01.002.

    Article  CAS  Google Scholar 

  151. Leopoldini M, Pitarch IP, Russo N, Toscano M. Structure, conformation, and electronic properties of apigenin, luteolin, and taxifolin antioxidants. A first principle theoretical study. J Phys Chem A. 2004;108(1):92–6. https://doi.org/10.1021/jp035901j.

    Article  CAS  Google Scholar 

  152. Zhang YM, Zhang ZY, Wang RX. Protective mechanisms of quercetin against myocardial ischemia reperfusion injury. Front Physiol. 2020;11:956. https://doi.org/10.3389/fphys.2020.00956.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Rho HS, Ghimeray AK, Yoo DS, Ahn SM, Kwon SS, Lee KH, Cho DH, Cho JY. Kaempferol and kaempferol rhamnosides with depigmenting and anti-inflammatory properties. Molecules. 2011;16(4):3338–44. https://doi.org/10.3390/molecules16043338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jiwajinda S, Santisopasri V, Murakami A, Kim OK, Kim HW, Ohigashi H. Suppressive effects of edible Thai plants on superoxide and nitric oxide generation. Asian Pac J Cancer Prev. 2002;3(3):215–23.

    PubMed  Google Scholar 

  155. Asano N, Nash RJ, Molyneux RJ, Fleet GWJ. Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron-Asymmetr. 2000;11(8):1645–80. https://doi.org/10.1016/S0957-4166(00)00113-0.

    Article  CAS  Google Scholar 

  156. Tyagi N, Sharma G, Hooda V. Phytochemical and pharmacological profile of Lagenaria siceraria. Int Res J Pharm 2012;3:1–4

  157. Zaatout H, ALShaikh N, Sallam S, Hammoda H. Phytochemical and biological activities of Lagenaria siceraria: an overview. Egypt J Chem. 2023;66(10):479–95. https://doi.org/10.21608/Ejchem.2023.182665.7373.

    Article  Google Scholar 

  158. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng. 2013;117(4):426–36. https://doi.org/10.1016/j.jfoodeng.2013.01.014.

    Article  CAS  Google Scholar 

  159. Nguyen VT, Bowyer MC, Van Vuong Q, Van Altena IA, Scarlett CJ. Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Ind Crop Prod. 2015;67:192–200. https://doi.org/10.1016/j.indcrop.2015.01.051.

    Article  CAS  Google Scholar 

  160. Kumar BP, Sindhuri M, Devi KJ, Kumar SV, Manogna A, Madhavi P, Krishna G. Isolation and characterization of natural mucilage from Lagenaria sicer aria. Int Res J Pharm. 2013;4:117–21.

    Article  Google Scholar 

  161. Deore S, Nikole K, Baviskar B, Khadabadi S. Isolation and quantitative estimation of quercetin in Lagenaria siceraria fruit. J Chromatograph Separat Techniq. 2013;4:191.

    Article  Google Scholar 

  162. Abbas M, Ahmed D, Qamar MT, Ihsan S, Noor ZI. Optimization of ultrasound-assisted, microwave-assisted and Soxhlet extraction of bioactive compounds from Lagenaria siceraria: a comparative analysis. Bioresource Technol Rep. 2021;15:100746. https://doi.org/10.1016/j.biteb.2021.100746.

    Article  CAS  Google Scholar 

  163. Bhattacharya S, Gurunanak BD. Anti-diabetic activity of lagenaria siceraria pulp and seed extract in normal and alloxan- induced diabetic rats. Int J Pharm Sci Res. 2012;3:3362–9.

    Google Scholar 

  164. Katare C, Saxena S, Agrawal S, Prasad GBKS. Alleviation of diabetes induced dyslipidemia by Lagenaria siceraria fruit extract in human type 2 diabetes. J Herb Med. 2013;3(1):1–8. https://doi.org/10.1016/j.hermed.2012.11.002.

    Article  Google Scholar 

  165. Juee LYM, Naqishbandi AM. Calabash (Lagenaria siceraria) potency to ameliorate hyperglycemia and oxidative stress in diabetes. J Funct Foods. 2020;66:103821. https://doi.org/10.1016/j.jff.2020.103821.

    Article  CAS  Google Scholar 

  166. Ho CH, Ho MG, Ho SP, Ho HH. Bitter bottle gourd (Lagenaria siceraria) toxicity. J Emerg Med. 2014;46(6):772–5. https://doi.org/10.1016/j.jemermed.2013.08.106.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.B.-J., B.L.-M., M.D.L., M.S., M.M., and J.S.-R. contributed significantly to the work reported, whether in the conception, study design, execution, acquisition of data, analysis, and interpretation, or all these areas, that is, revising or critically reviewing the article, giving final approval of the version to be published, agreeing on the journal to which the article has been submitted, and confirming accountabilities for all aspects of the work.

Corresponding authors

Correspondence to Miquel Martorell or Javad Sharifi-Rad.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brdar-Jokanović, M., Ljevnaić-Mašić, B., López, M.D. et al. A comprehensive review on Lagenaria siceraria: botanical, medicinal, and agricultural frontiers. Nutrire 49, 24 (2024). https://doi.org/10.1186/s41110-024-00266-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-024-00266-7

Keywords

Navigation