Skip to main content
Log in

Effect of black cumin-enriched acha-based cookies on antioxidant status and cholinergic enzymes in the brain of Plasmodium berghei-infected diabetic mice

  • Research
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

The pharmacological significance of acha (Digitaria exilis) and black cumin (Nigella sativa) in fostering sound mental health has been demonstrated in several researches. The current study looked at the effects of black cumin-enriched acha-based cookies on antioxidant and cholinesterases [acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)] activities in the brain of high-fat/streptozotocin-induced type-2 diabetic mice infected with Plasmodium bergei. The mice were infected with Plasmodium berghei (NK65 strain) after receiving STZ (50 mg/kg b.w.) intraperitoneally to cause diabetes and high blood glucose levels of > 200 mg/dL. Then, as a treatment, the acha-based cookies enriched with black cumin were administered to the experimental mice. The effect of the cookies on neuronal cholinesterases (AChE and BChE) activities, reactive oxygen species (ROS), thiobarbituric acid reactive species (TBARS), and reduced glutathione (GSH) levels, as well as neuronal antioxidant [superoxide dismutase (SOD), catalase, glutathione-s-transferase (GST), and glutathione peroxidase (GPx)] were assessed. The outcome revealed a (P < 0.05) rise in cholinesterases and MAO activities, ROS, and TBARS levels, with a concomitant decrease in neuronal antioxidant enzymes and GSH levels in the P. bergei-infected diabetic mice. However, the consumption of black cumin-enriched acha-based cookies by the mice caused an improved antioxidant status and significantly decreased the activities of AChE, BChE, and MAO activities and ROS and TBARS levels. The neuroprotective potential of the cookies, in particular, in the treatment of neurochemical deficit in P. bergei-infected diabetic mice was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Adedayo BC, Ajiboye OM, Oyeleye IS, Ojo RO, Oboh G. Effect of alkaloid extract from Andrographis paniculata (Burm. f.) Nees and Phyllanthus amarus Schumach. & Thonn. on cognitive-related biochemicals in the brain of streptozotocin-induced diabetic rats. Pharmacol Res-Modern Chinese Med. 2023;9:100314.

    Article  Google Scholar 

  2. Strachan MW, Price JF, Frier BM. Diabetes, cognitive impairment, and dementia. BMJ. 2008;336:6.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cole AR, Astell A, Green C, et al. Molecular connexions between dementia and diabetes. Neurosci Biobehav Rev. 2007;31:1046–63.

    Article  CAS  PubMed  Google Scholar 

  4. Grunblatt E, Bartl J, Riederer P. The link between iron, metabolic syndrome, and Alzheimer’s disease. J Neural Transm. 2011;118:371–9.

    Article  CAS  PubMed  Google Scholar 

  5. Reimann M, Bonifacio E, Solimena M, Schwarz PE, Ludwig B, Hanefeld M, Bornstein SR. An update on preventive and regenerative therapies in diabetes mellitus. Pharmacol Ther. 2009;121:317–31.

    Article  CAS  PubMed  Google Scholar 

  6. Maiara N, Rodrigo J, Beatriz A, Ana Maria G, Hugo C, Tatiana M. Neurovascular interactions in Malaria. NeuroImmunoModulation. 2021;28(3):108–17.

    Article  Google Scholar 

  7. Sanjay K, Deepak K, Rajiv S, Sameer A, Deep D. Malaria and diabetes. J Pak Med Assoc. 2017;5:810–3.

    Google Scholar 

  8. Takruri HR, Dameh MA. Study of the nutritional value of black cumin seeds (Nigella sativa L). J Sci Food Agric. 1998;76:404–10.

    Article  CAS  Google Scholar 

  9. Ramadan MF. Nutritional value, functional properties and nutraceutical applications of black cumin (Nigella sativa L.): an overview. Int J Food Sci Technol. 2007;42:1208–18.

    Article  CAS  Google Scholar 

  10. Javed S, Shahid AA, Haider MS. Nutritional, phytochemical potential and pharmacological evaluation of Nigella Sativa (Kalonji) and Trachyspermum Ammi (Ajwain). J Med Plant Res. 2010;6:768–75.

    Google Scholar 

  11. Ahmad I, Tripathi J, Manik S, Umar L, Rabia J. Preliminary phytochemical studies of the miracle herb of the century, Nigella sativa L. (black seed). IAJPS. 2013;3:3000–7.

    Google Scholar 

  12. Bukhari AA. Why black seed can be the cure for all illnesses except death. Advancement in Med Plant Res. 2018;9:75–80.

    Google Scholar 

  13. Farkhondeh T, Samarghandian S, Borji A. An overview on cardioprotective and anti-diabetic effects of thymoquinone. Asian Pac J Trop Med. 2017;10:849–54.

    Article  CAS  PubMed  Google Scholar 

  14. Khader M, Eckl PM. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci. 2014;17:950–7.

    PubMed  PubMed Central  Google Scholar 

  15. Jideani IA. Traditional and possible technological uses of Digitaria exilis (Fonio) and Digitaria iburua (iburu): a review. Plant Foods Hum Nutr. 1999;54:363–74.

    Article  CAS  PubMed  Google Scholar 

  16. Gyang JD, Wuyep EO. Acha: the grain of life. A bi-annual Public Raw Mater Res Dev Coun. 2005;6(1):39–41.

    Google Scholar 

  17. Jideani VA, Podgorski SC. In vitro starch digestibility and glycemic property of acha (Digitaria exilis) porridge. Cereal Foods World Suppl. 2009;54:48.

    Google Scholar 

  18. Gbenga-Fabusiwa FJ, Oladele EP, Oboh G, Adefegha SA, Oshodi AA. Nutritional properties, sensory qualities and glycemic response of biscuits produced from pigeon pea-wheat composite flour. J Food Biochem. 2018;42(4): e12505.

    Article  Google Scholar 

  19. Oguntuase SO, Fasakin OW, Oyeleye SI, Oboh G. Effects of dietary inclusion of Bambara groundnut and sweet orange peels on streptozotocin/HFD type-2 induced diabetes mellitus complications and related biochemical parameters. J of Food Biochem. 2022;46(11): e14373.

    Article  CAS  Google Scholar 

  20. Wang X, Long D, Hu X, Guo N. Gentiopicroside modulates glucose homeostasis in high-fat-diet and streptozotocin-induced type 2 diabetic mice. Frontiers Pharmacol. 2023;14. https://doi.org/10.3389/fphar.2023.1172360

  21. Ojueromi OO, Oboh G, Ademosun AO. Effect of black seeds (Nigella sativa) on inflammatory and immunomodulatory markers in Plasmodium berghei-infected mice. J Food Biochem. 2022;46(11): e14300.

    Article  CAS  PubMed  Google Scholar 

  22. Belle NA, Dalmolin GD, Fonini G, Rubim MA, Rocha JB. Polyamines reduces lipid peroxidation induced by different prooxidant agents. Brain Res. 2004;1008:245–51.

    Article  CAS  PubMed  Google Scholar 

  23. Adefegha SA, Oboh G, Dada FA, Okeke BM, Oyeleye SI. Berberine mitigates diabetes-induced erectile dysfunction in rats through modulation of antioxidant status and critical enzyme activity. Comp Clin Pathol. 2021;30:181–9.

    Article  CAS  Google Scholar 

  24. Oyeleye IS, Ogunsuyi OB, Oluokun OO, Oboh G. Seeds of moringa (Moringa oleifera) and mucuna (Mucuna pruriens L.) modulate biochemical indices of L-NAME-induced hypertension in rats: a comparative study. J Agricul Food Res. 2023;12:100624.

    Article  CAS  Google Scholar 

  25. Oyeleye IS, Ojo OR, Oboh G. Effect of formulated polyherbal tea blends on erectile function biomarkers in streptozotocin (STZ)-induced diabetic Male Rats. Food Chem Advances. 2023;2: 100237.

    Article  Google Scholar 

  26. Olasehinde TA, Akomolafe SF, Oladapo IF, Oyeleye SI. Effect of diet supplemented with African star apple fruit pulp on purinergic, cholinergic and monoaminergic enzymes, TNF-α expression and redox imbalance in the brain of hypertensive rats. Nutr Neurosci. 2023;26(496):510.

    Google Scholar 

  27. Jewett SL, Rocklin AM. Variation of one unit of activity with oxidation rate of organic substrate in indirect superoxide dismutase assays. Anal Biochem. 1993;212(2):555–9.

    Article  CAS  PubMed  Google Scholar 

  28. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389–94.

    Article  CAS  PubMed  Google Scholar 

  29. Akinyemi AJ, Oboh G, Ademiluyi AO, Araoye OO, Oyeleye SI. Dietary inclusion of local salt substitutes induces oxidative stress and renal dysfunction in rats. Rev Environ Health. 2014;29:355–61.

    Article  CAS  PubMed  Google Scholar 

  30. Ellman GL. Determination of sulfhydryl group. Arch Biochem Biophys. 1959;82:70–4.

    Article  CAS  PubMed  Google Scholar 

  31. Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. In Methods in enzymology. 1981;77:398–405.

  32. Taylor P, Radić Z. The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol. 1994;34:281–320.

    Article  CAS  PubMed  Google Scholar 

  33. Ballard CG, Greig NH, Guillozet-Bongaarts AL, Enz A, Darvesh S. Cholinesterases: roles in the brain during health and disease. Curr Alzheimer Res. 2005;2:307–18.

    Article  CAS  PubMed  Google Scholar 

  34. Jung M, Park M. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa. Molecules. 2007;12:2130–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Salma A, El-Marasy, Siham M, El-Shenawy, Aiman S, El-Khatib, Osama A, El-Shabrawy, Sanaa A, Kenawy (2012) Effect of Nigella sativa and wheat germ oils on scopolamine-induced memory impairment in rats. Bull Fac Pharm 81–88.

  36. Basant M, Morsy, Ghada MS, Doaa AH, Reem MS. The protective effect of Nigella sativa oil extract against neurotoxicity induced by Valproic acid. Int J Bioassays. 2017;6(9):5474–5484.

  37. Riederer P. Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology. 2004;25:271–7.

    Article  CAS  PubMed  Google Scholar 

  38. Riederer P, Sofic E, Rausch WD, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem. 1989;52:515–20.

    Article  CAS  PubMed  Google Scholar 

  39. Tahereh F, Saeed S, Ali M, Pourbagher S, Fariborz S. The neuroprotective effects of thymoquinone: a review. Dose Response. 2018;16(2):1559325818761455.

    Google Scholar 

  40. Oyeleye SI, Olasehinde TA, Fasakin OW, Oboh G, Saliu JAJ. Phyllanthus amarus Schumach. & Thonn. and Momordica charantia L extracts improve memory function, attenuate cholinergic and purinergic dysfunction, and suppress oxidative stress in the brain of doxorubicin–treated rats. Phytomedicine Plus. 2022;2(2):100283.

    Article  Google Scholar 

  41. Cynthia A, Massaad EK. Reactive oxygen species in the regulation of synaptic plasticity and memory. ARS. 2011;14(10):2013–54. https://doi.org/10.1089/ars.2010.3208.

    Article  CAS  Google Scholar 

  42. Kazemi M. Phytochemical composition, antioxidant, anti-inflammatory and antimicrobial activity of Nigella sativa L. essential oil. J Essent Oil Bear Plants. 2014;17:1002–11.

    Article  CAS  Google Scholar 

  43. Schimke I, Kahl PE, Romaniuk P, Papies B. Concentration of thiobarbituric acid reactive substances (TBARS) in serum following myocardial infarct. Klin Wochenschr. 1986;64(23):1237–9. https://doi.org/10.1007/bf01734466.

    Article  CAS  PubMed  Google Scholar 

  44. Oyeleye SI, Ademiluyi AO, Raymond OO, Oboh G. Synergistic cardioprotective ability of co-administration of Moringa supplemented diets and acarbose in diabetic cardiomyopathy involves attenuation of cholinergic, purinergic, monoaminergic, renin-angiotensin system, and antioxidant pathways. J Food Biochem. 2022;46: e14475.

    Article  CAS  PubMed  Google Scholar 

  45. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurological Res. 2017;39:73–82.

    Article  CAS  Google Scholar 

  46. Brigelius-Flohe R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 1999;27:951–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

OG, OB, OI, NE, and OO designed the manuscript. OB, OI, and OO are involved in data acquisition and interpretation of data. OB, OI, and OO prepared the figures. OB was involved in the initial draft of the manuscript. OB and OI corrected the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Bukola Olanrewaju.

Ethics declarations

Ethics approval

The animals were handled according to the guidelines of the Ethical Committee of the Federal University of Technology, Akure, Nigeria (FUT/SOS/1411).

Competing interests

The authors declare no competing interests.

Recommendation

We recommend that the cookies should be subjected to clinical observation study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nwanna, E., Olanrewaju, B., Oyeleye, I.S. et al. Effect of black cumin-enriched acha-based cookies on antioxidant status and cholinergic enzymes in the brain of Plasmodium berghei-infected diabetic mice. Nutrire 49, 18 (2024). https://doi.org/10.1186/s41110-024-00260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-024-00260-z

Keywords

Navigation