In this updated analysis of data from the 30-year period between 1983 and 2012, we observed divergent incidence trends for colon and rectal cancers in Hong Kong. Changes in the incidence of colon cancer showed similar patterns in both sexes, with increasing rates until the early 1990s followed by steady decreases thereafter among individuals in the 50+ age group. In addition, a steady decrease in colon cancer incidence between 1983 and 2012 was observed among individuals in the 20–49-year age group. In contrast, the incidence of rectal cancer increased steadily during the entire study period, and this increase was more pronounced in men.
The temporal trends in colon and rectal cancer incidences differ between Hong Kong and Japan, both of which have experienced similar socioeconomic development and were high-income regions in the 1980s. The incidence trends for colorectal cancer in Japan began to differ according to anatomic sites in the early 1990s, when colorectal cancer screening was introduced nationwide [11]. At this time, the incidence of rectal cancer decreased, while that of distal colon cancer stabilized and that of proximal colon cancer continuously increased [11]. Because the Hong Kong government does not offer systematic population-based colorectal cancer screening programs for asymptomatic individuals in any defined age group, we speculated that the observed divergent incidence trends in colon and rectal cancers may be explained by anatomic site-specific environmental factors related to colorectal carcinogenesis. While the possibility of self-initiated screening could not be fully ruled out, it would have had limited influence on the observed incidence trends as it would only have occurred in people with relevant knowledge.
The protective role of dietary factors, such as fruit and vegetable consumption, on CRC has been identified but may be limited to colon cancer only. This is rational to some degree due to the short retention time of fruit and vegetables in the rectum. An earlier systematic review with meta-analysis reported an inverse association between CRC risk and fruit and vegetable intake, which seemed to be restricted to colon cancer only (pooled RR for the highest versus the lowest intake level = 0.91, 95% CI 0.84–0.99) [12]. Another meta-analysis focusing on cruciferous vegetable consumption reported similar results only in terms of an inverse association between cruciferous vegetable intake and CRC risk that was restricted to colon cancer (pooled RR = 0.78, 95% CI 0.69–0.89) rather than rectal cancer (pooled RR = 0.91, 95% CI 0.74–1.13) [13]. Dietary fiber may be one explanation for the inverse association between fresh fruit and vegetable intake and colon cancer risk. Dietary fiber has been hypothesized to reduce the risk of colorectal cancer, although it is unclear whether dietary fiber is independent from other CRC risk factors [14]. A prospective cohort study of Scandinavian populations observed a protective role of total and cereal fiber intake, particularly from cereal foods with a high fiber content, against colon cancer but not rectal cancer; a cereal fiber intake of 2 g per day was associated with a 6% reduced risk of colon cancer in men (incidence ratios = 0.94, 95% CI 0.90–0.98) and a 3% reduced risk in women (incidence ratio = 0.97, 95% CI 0.93–1.00) [15]. A case–control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) found an inverse association between plasma levels of alkylresorcinols, biomarkers of whole-grain rye and wheat intake [16, 17], and the risk of distal colon cancer but not rectal cancer [18]. In contrast, the protective role of fish intake against CRC seems more pronounced for rectal cancer (summary OR = 0.79, 95% CI 0.65–0.97) than for colon cancer (summary OR = 0.96, 95% CI 0.81–1.14) [19]. The decreasing age-standardized incidence of colon cancer since the 1990s may reflect the increasing intake of fresh fruit, vegetables and fish in the Hong Kong population [20]. However, this trend is contradicted by the increasing incidence of rectal cancer.
A recent systematic review and meta-analysis reported an increased risk of colon cancer associated with high red meat intake (RR = 1.22, 95% CI 1.06–1.39), but the association for rectal cancer was modestly statistically insignificant (RR = 1.13, 95% CI 0.96–1.34) [21]. How red meat intake influences CRC by anatomical sites and its potential effects on incidence trends for colon and rectal cancers require further research.
The protective effects of physical activity against colorectal cancer also differed by anatomical sites. Physical activity was inversely related to the risk of colon cancer in the proximal (RR = 0.76, 95% CI 0.70–0.83) and distal colon (RR = 0.77, 95% CI 0.71–0.83), but no such relationship could be established for the rectum (RR = 0.98, 95% CI 0.88–1.08) [22]. Due to a lack of surveillance data on physical activity among Hong Kong residents, the contribution of physical activity to the incidence trends of colon and rectal cancers could not be evaluated.
Some risk factors related to colorectal cancer showed a male predominance in either distribution (e.g., smoking and alcohol intake) or the magnitude of the association (e.g., red meat consumption), which might provide some clues to the sex- or anatomical site-specific incidence trends of colorectal cancer. Alcohol use is a well-established risk factor for CRC. A recent meta-analysis revealed a stronger association between heavy alcohol use and CRC risk in Asian populations (pooled RR = 1.81, 95% CI 1.33–2.46) than in Western populations [23], and the elevated CRC risk related to alcohol use does not seem to differ according to anatomical site [24]. A rising trend in alcohol use, in terms of both prevalence and patterns, has been noted in over the past few decades in Hong Kong [25], and this increase parallels the observed increase in the incidence of rectal cancer. However, this observation is not in line with the decreasing incidence of colon cancer over the last 2 decades. It has been suggested that cigarette smoking is associated with an increased risk of both colon cancer (current vs. never smokers, RR = 1.09, 95% CI 1.01–1.18) and rectal cancer (RR = 1.24, 95% CI 1.16–1.39) [26]. Since 1982, the Hong Kong government has taken a progressive approach to tobacco control, raising tobacco taxes and imposing a comprehensive ban in 1999 on tobacco advertising and promotional activities [27]. Therefore, the prevalence of daily cigarette smokers aged 15 years or older decreased from 39.7% in 1982 to 19.1% in 2012 among males [28], which seems to be in line with the decreasing incidence of colon cancer in males over the last two decades. However, we cannot conclude a causal relationship between the decline in the prevalence of cigarette smoking and the decline in the age-standardized incidence of colon cancer because there should be a lag time between these two events, and the prevalence of cigarette smoking before 1980 was scarce. The prevalence of cigarette smoking is low among Hong Kong women, although an increasing trend emerged in 1990 [28]. The diverse temporal trends in the prevalence of cigarette smoking and colorectal cancer suggest that cigarette smoking does not play a major role in the etiology of colorectal cancer among Hong Kong women. The consumption of red meat has been modestly associated with an increased risk of CRC, but the positive association is limited for men. The summary RR estimates for high versus low intake of red meat among men and women were 1.21 (95% CI 1.04–1.42) and 1.01 (95% CI 0.87–1.17), respectively [29]. Therefore, the observed increasing incidence of rectal cancer in men may be, at least to some extent, attributable to the increased intake of red meat in the Hong Kong population [20].
Patients with long-standing inflammatory bowel disease (IBD), i.e., ulcerative colitis and Crohn′s disease, have a 2- to 3-fold increased risk of developing colorectal cancer [30]. Although ulcerative colitis and Crohn’s disease are still relatively rare, their age-adjusted prevalence in Hong Kong, increased from 0.49 to 0.05 per 100,000 in 1985–1989 to 21.14 and 14.17 per 100,000 in 2011–2014, respectively [31]. The dramatic increase in IBD cases in Hong Kong is alarming, however, both the risk factors driving the increase and the long-term consequences of these diseases, such as the risk of colorectal cancer, are unclear.
Diabetes mellitus (DM) is an independent risk factor for colon and rectal cancers with similar magnitudes of association. The association between DM and colon cancer incidence did not differ significantly by sex, but for rectal cancer, there was a significant association between DM and cancer risk for men (summary RR = 1.22, 95% CI 1.07–1.40), but not for women (summary RR = 1.09, 95% CI 0.99–1.19) [32]. The male-specific positive association between DM and rectal cancer is in line with the male-specific increase in the age-standardized incidence of rectal cancer, suggesting that DM may play an important role in the etiology of male rectal cancer in Hong Kong. However, there is a lack of published data on long-term trends in the incidence of diabetes in Hong Kong, and therefore, we cannot confirm a causal relationship.
The present study has some strengths and limitations. The included data from the Hong Kong Cancer Registry were of high quality and had complete coverage. However, because proximal and distal colon cancers were not separately recorded in the Hong Kong Cancer Registry, we were unable to evaluate potential differences in incidence trends despite the increasing concerns regarding the etiological heterogeneity of cancers in these two anatomic subsites. Although we attempted to differentiate between the period and cohort effects on the observed incidence trends, all etiological explanations should be interpreted with caution because of the inherent limitations of age-period-cohort analysis, i.e., the collinearity among age, period, and cohort effects. Intuitively, period effects represent temporal variations in cancer incidence over time that affect all age groups simultaneously, and cohort effects represent differences across groups of individuals born in different eras. In our study, for colon cancer, it was difficult to distinguish between period and cohort effects because they varied in similar ways, while for rectal cancer, it seems that the period effect plays a role. However, the estimated period effects were probably a reflection of cohort effects due to the collinearity between period and cohort effects, instead of “true” period effects.
In summary, the incidences of colon and rectal cancers have changed in divergent patterns in Hong Kong between 1983 and 2012, supporting the belief that these two types of cancers have heterogeneous etiologies. The distinct changes in the epidemiology of colon and rectal cancers cannot be completely explained by current knowledge regarding the etiologies of these two types of cancers. Continuous monitoring of the incidence trends of CRC and research efforts aimed at understanding its etiology by anatomical site are warranted.