Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Research in the Mathematical Sciences
  3. Article
Rankin–Selberg L-functions and the reduction of CM elliptic curves
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

$$p^\infty $$ p ∞ -Selmer groups and rational points on CM elliptic curves

08 July 2022

Ashay Burungale, Francesc Castella, … Ye Tian

p-converse to a theorem of Gross–Zagier, Kolyvagin and Rubin

02 November 2019

Ashay A. Burungale & Ye Tian

On a family of elliptic curves of rank at least 2

06 June 2022

Kalyan Chakraborty & Richa Sharma

The Lang–Trotter conjecture for products of non-CM elliptic curves

21 March 2022

Hao Chen, Nathan Jones & Vlad Serban

Plus/minus Selmer groups and anticyclotomic $${{\mathbb {Z}}_p}$$ Z p -extensions

07 June 2021

Ahmed Matar

The CM class number one problem for curves of genus 2

17 January 2023

Pınar Kılıçer & Marco Streng

On the soft p-converse to a theorem of Gross–Zagier and Kolyvagin

15 November 2022

Chan-Ho Kim

Modular curves over number fields and ECM

25 October 2022

F. Morain

Ranks of elliptic curves over $$\mathbb{Z}_p^2$$ℤp2-extensions

17 January 2020

Antonio Lei & Florian Sprung

Download PDF
  • Research
  • Open Access
  • Published: 29 September 2015

Rankin–Selberg L-functions and the reduction of CM elliptic curves

  • Sheng-Chi Liu1,
  • Riad Masri2 &
  • Matthew P. Young2 

Research in the Mathematical Sciences volume 2, Article number: 22 (2015) Cite this article

  • 683 Accesses

  • 7 Citations

  • Metrics details

Abstract

Let q be a prime and \(K={\mathbb Q}(\sqrt{-D})\) be an imaginary quadratic field such that q is inert in K. If \(\mathfrak {q}\) is a prime above q in the Hilbert class field of K, there is a reduction map

$$\begin{aligned} r_{\mathfrak q}:\;{\mathcal {E\ell \ell }}({\mathcal {O}}_K) \longrightarrow {\mathcal {E\ell \ell }}^{ss}({\mathbb F}_{q^2}) \end{aligned}$$

from the set of elliptic curves over \(\overline{{\mathbb Q}}\) with complex multiplication by the ring of integers \({\mathcal {O}}_K\) to the set of supersingular elliptic curves over \({\mathbb {F}}_{q^2}.\) We prove a uniform asymptotic formula for the number of CM elliptic curves which reduce to a given supersingular elliptic curve and use this result to deduce that the reduction map is surjective for \(D \gg _{\varepsilon } q^{18+\varepsilon }.\) This can be viewed as an analog of Linnik’s theorem on the least prime in an arithmetic progression. We also use related ideas to prove a uniform asymptotic formula for the average

$$\begin{aligned} \sum _{\chi }L(f \times \Theta _\chi ,1/2) \end{aligned}$$

of central values of the Rankin–Selberg L-functions \({L(f \times {\Theta _{\chi}},s)}\) where f is a fixed weight 2, level q arithmetically normalized Hecke cusp form and \(\Theta _\chi \) varies over the weight 1, level D theta series associated to an ideal class group character \(\chi \) of K. We apply this result to study the arithmetic of Abelian varieties, subconvexity, and \(L^4\) norms of autormorphic forms.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bertolini, M., Darmon, H.: A rigid analytic Gross–Zagier formula and arithmetic applications. Ann. Math. 146, 111–147 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blomer, V., Harcos, G.: Hybrid bounds for twisted L-functions. J. Reine Angew. Math. 621, 53–79 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Blomer, V., Khan, R., Young, M.: Distribution of mass of Hecke eigenforms. Duke Math. J. 162, 2609–2644 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blomer, V., Michel, P.: Sup-norms of eigenfunctions on arithmetic ellipsoids. Int. Math. Res. Not. IMRN 21, 4934–4966 (2011)

    MathSciNet  Google Scholar 

  5. Buttcane, J., Khan, R.: L norms of Hecke newforms of large level. http://arxiv.org/abs/1305.1850 (2013, preprint)

  6. Cornut, C.: Mazur’s conjecture on higher Heegner points. Invent. Math. 148, 495–523 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duke, W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92, 73–90 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duke, W.: The critical order of vanishing of automorphic L-functions with large level. Invent. Math. 119, 165–174 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Elkies, N., Ono, K., Yang, T.H.: Reduction of CM elliptic curves and modular function congruences. Int. Math. Res. Not. 44, 2695–2707 (2005)

    Article  MathSciNet  Google Scholar 

  10. Feigon, B., Whitehouse, D.: Averages of central L-values of Hilbert modular forms with an application to subconvexity. Duke Math. J. 149, 347–410 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Feigon, B., Whitehouse, D.: Exact averages of central values of triple product L-functions. Int. J. Number Theory 6, 1609–1624 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gelbart, S., Jacquet, H.: A relation between automorphic representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. 11, 471–542 (1978)

    MATH  MathSciNet  Google Scholar 

  13. Gross, B.: Heights and the special values of L-series. Number theory (Montreal, Que., 1985). In: CMS Conference Proceedings, vol. 7, pp. 115–187. Amer. Math. Soc., Providence (1987)

  14. Gross, B., Kudla, S.: Heights and the central critical values of triple product L-functions. Compositio Math. 81, 143–209 (1992)

    MATH  MathSciNet  Google Scholar 

  15. Hoffstein, J., Kontorovich, A.: The first non-vanishing quadratic twist of an automorphic L-series. http://arxiv.org/abs/1008.0839 (2010, preprint)

  16. Holowinsky, R., Munshi, R.: Level aspect subconvexity for Rankin–Selberg L-functions, to appear in automorphic representations and L-functions. Tata Institute of Fundamental Research, Mumbai. http://arxiv.org/abs/1203.1300 (2012)

  17. Holowinsky, R., Templier, N.: First moment of Rankin–Selberg central L-values and subconvexity in the level aspect. Ramanujan J. 33, 131–155 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Iwaniec, H.: Fourier coefficients of modular forms of half-integral weight. Invent. Math. 87, 385–401 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53, pp. xii+615. American Mathematical Society, Providence (2004)

  20. Iwaniec, H., Luo, W., Sarnak, P.: Low lying zeros of families of L-functions. Inst. Hautes Études Sci. Publ. Math. 91(2000), 55–131 (2001)

    Google Scholar 

  21. Jackson, J., Knightly, A.: Averages of twisted L-functions, p. 24 (2015, preprint)

  22. Jetchev, D., Kane, B.: Equidistribution of Heegner points and ternary quadratic forms. Math. Ann. 350, 501–532 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kane, B.: Representations of integers by ternary quadratic forms. Int. J. Number Theory 6, 127–159 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kane, B.: CM liftings of supersingular elliptic curves. J. Théor. Nombres Bordeaux 21, 635–663 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kohel, D.: Endomorphism rings of elliptic curves over finite fields. University of California, Berkeley, Thesis (1996)

  26. Kohnen, W., Sengupta, J.: On quadratic character twists of Hecke L-functions attached to cusp forms of varying weights at the central point. Acta Arith. 99, 61–66 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kohnen, W., Zagier, D.: Values of L-series of modular forms at the center of critical strip. Invent. Math. 64, 175–198 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, X.: Upper bounds on L-functions at the edge of the critical strip. IMRN 4, 727–755 (2010)

    Google Scholar 

  29. Liu, S.-C., Masri, R., Young, M.P.: Subconvexity and equidistribution of Heegner points in the level aspect. Compositio Math. 149, 1150–1174 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Michel, P.: The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. Ann. Math. 160, 185–236 (2004)

    Article  MATH  Google Scholar 

  31. Michel, P., Ramakrishnan, D.: Consequences of the Gross–Zagier formulae: stability of average L. Number theory, analysis and geometry, pp. 437–459. Springer, New York (2012)

    Google Scholar 

  32. Michel, P., Venkatesh, A.: Heegner points and non-vanishing of Rankin/Selberg L-functions. Analytic number theory, Clay Math. Proc., vol. 7, pp. 169–183. Amer. Math. Soc., Providence (2007)

  33. Nelson, P.: Stable averages of central values of Rankin–Selberg L-functions: some new variants. http://arxiv.org/abs/1202.6313 (2012, preprint)

  34. Vatsal, V.: Uniform distribution of Heegner points. Invent. Math. 148, 1–46 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Yang, T.H.: Minimal CM liftings of supersingular elliptic curves. Pure Appl. Math. Q. 4, 1317–1326 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

R. M. and M. Y. were supported by the National Science Foundation under agreement Nos. DMS-1162535 (R. M.) and DMS-1101261 (M. Y.). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

  1. Department of Mathematics, Washington State University, Pullman, WA, 99164-3113, USA

    Sheng-Chi Liu

  2. Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX, 77843-3368, USA

    Riad Masri & Matthew P. Young

Authors
  1. Sheng-Chi Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Riad Masri
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Matthew P. Young
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Riad Masri.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, SC., Masri, R. & Young, M.P. Rankin–Selberg L-functions and the reduction of CM elliptic curves. Mathematical Sciences 2, 22 (2015). https://doi.org/10.1186/s40687-015-0040-y

Download citation

  • Received: 16 March 2015

  • Accepted: 26 August 2015

  • Published: 29 September 2015

  • DOI: https://doi.org/10.1186/s40687-015-0040-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Supersingular elliptic curves
  • Equidistribution
  • Gross points
  • Heegner points
  • Mean values of L-functions
  • \(L^4\) norm

Mathematics Subject Classification

  • 11M41
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.