Hake M, Kjellén N, Alerstam T. Satellite tracking of Swedish ospreys Pandion haliaetus: autumn migration routes and orientation. J Avian Biol. 2001;32(1):47–56.
Article
Google Scholar
Willemoes M, Blas J, Wikelski M, Thorup K. Flexible navigation response in common cuckoos Cuculus canorus displaced experimentally during migration. Sci Rep. 2015;5:16402.
McKinnon EA, Love OP. Ten years tracking the migrations of small landbirds: lessons learned in the golden age of bio-logging. Auk. 2018;135(4):834–56.
Article
Google Scholar
Alerstam T, Hake M, Kjellén N. Temporal and spatial patterns of repeated migratory journeys by ospreys. Anim Behav. 2006;71(3):555–66.
Article
Google Scholar
Vardanis Y, Klaassen RHG, Strandberg R, Alerstam T. Individuality in bird migration: routes and timing. Biol Lett. 2011;7(4):502–5.
PubMed
PubMed Central
Article
Google Scholar
Stanley CQ, MacPherson M, Fraser KC, McKinnon EA, Stutchbury BJM. Repeat tracking of individual songbirds reveals consistent migration timing but flexibility in route. PLoS One. 2012;7(7):e40688.
CAS
PubMed
PubMed Central
Article
Google Scholar
García-Ripollés C, Urios V, López-López P. Individual repeatability in timing and spatial flexibility of migration routes of trans-Saharan migratory raptors. Current Zoology. 2015;60(5):642–52.
Google Scholar
Wellbrock AHJ, Bauch C, Rozman J, Witte K. ‘Same procedure as last year?‘ repeatedly tracked swifts show individual consistency in migration pattern in successive years. J Avian Biol. 2017;48(6):897–903.
Article
Google Scholar
Mellone U, Lopez-Lopez P, Liminana R, Urios V. Weather conditions promote route flexibility during open ocean crossing in a long-distance migratory raptor. Int J Biometeorol. 2011;55(4):463–8.
PubMed
Article
Google Scholar
Stanley CQ, McKinnon EA, Fraser KC, Macpherson MP, Casbourn G, Friesen L, et al. Connectivity of wood thrush breeding, wintering, and migration sites based on range-wide tracking. Conserv Biol. 2015;29(1):164–74.
PubMed
Article
Google Scholar
La Sorte FA, Fink D. Migration distance, ecological barriers and en-route variation in the migratory behaviour of terrestrial bird populations. Glob Ecol Biogeogr. 2017;26(2):216–27.
Article
Google Scholar
Hüppop O, Michalik B, Bach L, Hill R, Pelletier SK. Migratory birds and bats. In: Perrow MR, editor. Wildlife and wind farms, conflicts and solutions. Vol. 3, Offshore: Potential Effects. Exeter: Pelagic Publishing. 2019:142–73.
Newton I. Weather-related mass-mortality events in migrants. Ibis. 2007;149(3):453–67.
Article
Google Scholar
Ward MP, Benson TJ, Deppe J, Zenzal TJ Jr, Diehl RH, Celis-Murillo A, et al. Estimating apparent survival of songbirds crossing the Gulf of Mexico during autumn migration. Proc Biol Sci. 2018;285:1889.
Article
Google Scholar
Woodworth BK, Mitchell GW, Norris DR, Francis CM, Taylor PD. Patterns and correlates of songbird movements at an ecological barrier during autumn migration assessed using landscape- and regional-scale automated radiotelemetry. Ibis. 2014;157(2):326–39.
Article
Google Scholar
Lack D. Migration across the southern North Sea studied by radar part 4. Autumn Ibis. 1963;105(1):1–54.
Google Scholar
Eastwood E. Radar ornithology. Bungay, Suffolk: Richard Clay; 1967.
Bruderer B, Liechti F. Flight behaviour of nocturnally migrating birds in coastal areas: crossing or coasting. J Avian Biol. 1998;29(4):499–507.
Article
Google Scholar
Diehl RH, Larkin RP, Black JE. Radar observations of bird migration over the Great Lakes. Auk. 2003;120(2):278–90.
Article
Google Scholar
Lowery GH Jr, Newman RJ. A continentwide view of bird migration on four nights in October. Auk. 1966;83(4):547–86.
Article
Google Scholar
Richardson WJ. Timing of bird migration in relation to weather: updated review. In: Gwinner E, editor. Bird migration. Berlin, Heidelberg: Springer; 1990.
Chapter
Google Scholar
Alerstam T. Detours in bird migration. J Theor Biol. 2001;209(3):319–31.
CAS
PubMed
Article
Google Scholar
Alerstam T, Pettersson S-G. Why do migrating birds fly along coastlines? J Theor Biol. 1977;65(4):699–712.
CAS
PubMed
Article
Google Scholar
Åkesson S. Coastal migration and wind drift compensation in nocturnal passerine migrants. Ornis Scand. 1993;24(2):87–94.
Article
Google Scholar
Liechti F, Bruderer B. The relevance of wind for optimal migration theory. J Av Biol. 1998;29(4):561–8.
Article
Google Scholar
Schmaljohann H, Naef-Daenzer B. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol. 2011;80(6):1115–22.
PubMed
Article
Google Scholar
Sjöberg S, Alerstam T, Akesson S, Schulz A, Weidauer A, Coppack T, et al. Weather and fuel reserves determine departure and flight decisions in passerines migrating across the Baltic Sea. Anim Behav. 2015;104:59–68.
Article
Google Scholar
Alerstam T. Wind as selective agent in bird migration. Ornis Scand. 1979;10(1):76–93.
Article
Google Scholar
Liechti F. Birds: blowin’ by the wind? J Ornithol. 2006;147(2):202–11.
Article
Google Scholar
Erni B, Liechti F, Underhill L, Bruderer B. Wind and rain govern the intensity of nocturnal bird migration in Central Europe - a log-linear regression analysis. Ardea. 2002;90(1):155–66.
Google Scholar
Weber TP, Alerstam T, Hedenström A. Stopover decisions under wind influence. J Av Biol. 1998;29(4):552–60.
Article
Google Scholar
Hüppop O, Dierschke J, Exo K-M, Frederich E, Hill R. Bird migration studies and potential collision risk with offshore wind turbines. Ibis. 2006;148(s1):90–109.
Article
Google Scholar
Ashmole MJ. The migration of European thrushes: a comparative study based on ringing recoveries. Ibis. 1962;104(4):522–59.
Article
Google Scholar
Fransson T, Hall-Karlsson S. Svensk ringmärkningsatlas Vol. 3. Stockholm: Naturhistorika Riksmuseet & Sveriges Ornithologiska Förening; 2008.
Google Scholar
Bairlein F, Dierschke J, Dierschke V, Salewski V, Geiter O, Hüppop K, et al. Atlas des Vogelzugs - Ringfunde deutscher brut- und Gastvögel. Wiebelsheim: Aula; 2014.
Google Scholar
Hüppop O, Hüppop K. Bird migration on Helgoland: the yield from 100 years of research. J Ornithol. 2011;152(S1):25–40.
Article
Google Scholar
Hüppop O, Hilgerloh G. Flight call rates of migrating thrushes: effects of wind conditions, humidity and time of day at an illuminated offshore platform. J Avian Biol. 2012;43(1):85–90.
Article
Google Scholar
Hüppop K, Dierschke J, Dierschke V, Hill R, Jachmann KF, Hüppop O. Phenology of the “visible bird migration” across the German bight. Vogelwarte. 2010;48(3):181–267.
Google Scholar
Dierschke J, Dierschke V, Hüppop K, Hüppop O, Jachmann KF. Die Vogelwelt der Insel Helgoland. OAG Helgoland: Helgoland; 2011.
Google Scholar
Francis CM, Taylor PD, Crysler Z. Motus Wildlife Tracking System: a novel approach for tracking small birds. Avian Conserv Ecol. 2016;12(1):Art. 8.
Google Scholar
Müller F, Rüppel G, Schmaljohann H. Does the length of the night affect the timing of nocturnal departures in a migratory songbird? Anim Behav. 2018;141:183–94.
Article
Google Scholar
Taylor PD, Crewe TL, Mackenzie SA, Lepage D, Aubry Y, Crysler Z, et al. The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement. Av Cons Ecol. 2017;12:1.
Google Scholar
R Core Team. R: A language and environment for statistical computing. In: Computing RFfS, editor. Vienna, Austria 2018.
Wessel P, Smith WHF. A global, self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res Solid Earth. 1996;101(B4):8741–3.
Article
Google Scholar
Kemp MU, Van Loon EE, Shamoun-Baranes J, Bouten W. RNCEP: global weather and climate data at your fingertips. Methods Ecol Evol. 2012;3(1):65–70.
Article
Google Scholar
Brzustowski J, Lepage D. Motus: fetch and use data from http://motus.org. R package version 1.0.0. 2018.
Crewe TL, Crysler Z, Taylor PD. Motus R book – A walk through the use of R for Motus automated radio-telemetry data. published online, Version 1.0: https://motus.org/MotusRBook/; 2018. Available from: https://motus.org/MotusRBook/.
Kleinbaum DG, Klein M. Survival Analysis, a Self-Learning Text, Third Edt. . Gail M, Krickberger K, Samet JM, Tsiatis A, Wong W, editors. New York, Dordrecht, Heidelberg, London: Springer; 2012.
Therneau T. A package for survival analysis in S, version 2.38. published online 2015.
Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG. Where is positional uncertainty a problem for species distribution modelling? Ecography. 2014;37(2):191–203.
Article
Google Scholar
Barton K. MuMIn: Multi-Model Inference. R package version 1.42.1 2018.
Nagelkerke NJD. A note on a general definition of the coefficient of determination. Biometrika. 1991;78(3):691–2.
Article
Google Scholar
Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128–38.
PubMed
PubMed Central
Article
Google Scholar
Lenth RV. Response-surface methods in R, using rsm. J Stat Softw. 2009;32(7):1–17.
Article
Google Scholar
Kemp MU, Shamoun-Baranes J, Van Gasteren H, Bouten W, Van Loon EE. Can wind help explain seasonal differences in avian migration speed? J Avian Biol. 2010;41(6):672–7.
Article
Google Scholar
Fitzroy R. The weather book: a manual of practical meteorology. Camebridge: Cambridge University Press; 2012.
Book
Google Scholar
Alerstam T. Nocturnal migration of thrushes (Turdus spp.) in southern Sweden. Oikos. 1976;27(3):457–75.
Article
Google Scholar
Hilgerloh G. Der Einfluss einzelner Wetterfaktoren auf den Herbstzug der Singdrossel (Turdus philomelos) über der Deutschen Bucht. J Ornithol. 1977;118(4):416–35.
Article
Google Scholar
van Belle J, Shamoun-Baranes J, Van Loon EE, Bouten W. An operational model predicting autumn bird migration intensities for flight safety. J Appl Ecol. 2007;44:864–74.
Article
Google Scholar
Michaelides SC. Precipitation: advances in measurement, estimation and prediction. Berlin, Heidelberg: Springer; 2008.
Book
Google Scholar
Kistler R, Kalnay E, Collins W, Saha S, White G, Woollen J, et al. The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Met Sci. 2001;82(2):247–68.
Article
Google Scholar
Chernetsov N. Passerine migration: stopovers and flight. Berlin, Heidelberg: Springer; 2012.
Book
Google Scholar
Chernetsov N. Efficiency of migratory stopovers of song thrushes Turdus philomelos and Redwings T. iliacus and their migration strategies in the eastern Baltic. Avian Ecol Behav. 2002;9:15–22.
Google Scholar
Bauchinger U, Klaassen M. Longer days in spring than in autumn accelerate migration speed of passerine birds. J Avian Biol. 2005;36(1):3–5.
Article
Google Scholar
Yohannes E, Biebach H, Nikolaus G, Pearson DJ. Migration speeds among eleven species of long-distance migrating passerines across Europe, the desert and eastern Africa. J Avian Biol. 2009;40(2):126–34.
Article
Google Scholar
Nilsson C, Klaassen RHG, Alerstam T. Differences in speed and duration of bird migration between spring and autumn. Am Nat. 2013;181(6):837–45.
PubMed
Article
Google Scholar
Schmaljohann H. Proximate mechanisms affecting seasonal differences in migration speed of avian species. Sci Rep. 2018;8:4106.
PubMed
PubMed Central
Article
CAS
Google Scholar
Shamoun-Baranes J, van Gasteren H. Atmospheric conditions facilitate mass migration events across the North Sea. Anim Behav. 2011;81:691–704.
Article
Google Scholar
Hegemann A, Fudickar AM, Nilsson J-Å. A physiological perspective on the ecology and evolution of partial migration. J Ornithol. 2019.
Schmaljohann H, Korner-Nievergelt F, Naef-Daenzer B, Nagel R, Maggini I, Bulte M, et al. Stopover optimization in a long-distance migrant: the role of fuel load and nocturnal take-off time in Alaskan northern wheatears (Oenanthe oenanthe). Front Zool. 2013;10(1):26.
PubMed
PubMed Central
Article
Google Scholar
Deppe JL, Ward MP, Bolus RT, Diehl RH, Celis-Murillo A, Zenzal TJ, et al. Fat, weather, and date affect migratory songbirds’ departure decisions, routes, and time it takes to cross the Gulf of Mexico. Proc Natl Acad Sci. 2015;112(46):E6331–E8.
CAS
PubMed
Article
PubMed Central
Google Scholar
Eikenaar C, Isaksson C, Hegemann A. A hidden cost of migration? Innate immune function versus antioxidant defense. Ecology and evolution. 2018;8(5):2721–8.
PubMed
PubMed Central
Article
Google Scholar
Nilsson J-Å, Brönmark C, Hansson L-A, Chapman BB. Individuality in movement: the role of animal personality. In: Hansson L-A, Åkesson S, editors. Animal movement across scales. New York: Oxford University Press; 2014. p. 90–109.
Chapter
Google Scholar
Hüppop K, Dierschke J, Hill R, Hüppop O. Jahres- und tageszeitliche Phänologie der Vogelrufaktivität über der Deutschen Bucht. Vogelwarte. 2012;50(2):87–108.
Google Scholar
Dierschke V. Quantitative Erfassung des Vogelzugs während der Hellphase bei Helgoland. Corax. 2003;19(2):27–34.
Google Scholar
Hill R, Debus M, Rebke M, Weiner C. Testfeldforschung zum Vogelzug am offshore-Pilotpark alpha ventus und Auswertung der kontinuierlich auf FINO1 erhobenem Daten zum Vogelzug der Jahre 2008 bis 2012. Osterholz-Scharmbeck: Bundesinstitut für Seeschiffahrt und Hydrographie; 2014.
Google Scholar
Fijn RC, Krijgsveld KL, Poot MJM, Dirksen S. Bird movements at rotor heights measured continuously with vertical radar at a Dutch offshore wind farm. Ibis. 2015;157(3):558–66.
Article
Google Scholar