Versatile algorithms for the computation of 2-point spatial correlations in quantifying material structure

  • Ahmet Cecen
  • Tony Fast
  • Surya R. KalidindiEmail author


This paper presents a generalized framework along with the associated computational strategies for a rigorous quantification of the material structure in a range of different applications using the framework of 2-point spatial correlations. In particular, we focus on applications requiring different assumptions about the periodicity and/or involving irregular domain shapes and potentially extremely large datasets. Important details of the computational algorithms needed to address these challenges are developed and illustrated with example case studies. Algorithms developed and presented in this work are available at


Spatial Correlation Fast Fourier Transform Algorithm Irregular Domain Rigorous Quantification Microstructure Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge support from AFOSR award FA9550-12-1-0458.


  1. 1.
    Bei H, George EP (2005) Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy. Acta Mater 53(1):69–77. doi: Google Scholar
  2. 2.
    Promentilla MAB, Sugiyama T, Hitomi T, Takeda N (2009) Quantification of tortuosity in hardened cement pastes using synchrotron-based X-ray computed microtomography. Cement Concrete Res 39(6):548–557. doi: Google Scholar
  3. 3.
    Holzer L, Münch B, Iwanschitz B, Cantoni M, Hocker T, Graule T (2011) Quantitative relationships between composition, particle size, triple phase boundary length and surface area in nickel-cermet anodes for Solid Oxide Fuel Cells. J Power Sources 196(17):7076–7089. doi: Google Scholar
  4. 4.
    Su H, Gao W, Feng Z, Lu Z (2012) Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Des 36:590–596. doi: Google Scholar
  5. 5.
    Shearing PR, Howard LE, Jørgensen PS, Brandon NP, Harris SJ (2010) Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem Commun 12(3):374–377. doi: Google Scholar
  6. 6.
    Van de Lagemaat J, Benkstein KD, Frank AJ (2001) Relation between particle coordination number and porosity in nanoparticle films: implications to dye-sensitized solar cells. J Phys Chem B 105(50):12433–12436Google Scholar
  7. 7.
    Cecen A, Wargo E, Hanna A, Turner D, Kalidindi S, Kumbur E (2012) 3-D microstructure analysis of fuel cell materials: spatial distributions of tortuosity, void size and diffusivity. J Electrochem Soc 159(3):B299–B307Google Scholar
  8. 8.
    Dimiduk DM, Hazzledine PM, Parthasarathy TA, Seshagiri S, Mendiratta MG (1998) The role of grain size and selected microstructural parameters in strengthening fully lamellar TiAl alloys. Metallurgical and Materials Transactions A 29(1):37–47. doi: Google Scholar
  9. 9.
    Baker T, Gave K, Charles J (1976) Inclusion deformation and toughness anisotropy in hot-rolled steels. Metals Technol 3(1):183–193Google Scholar
  10. 10.
    Garrison WM Jr, Wojcieszynski AL (2007) A discussion of the effect of inclusion volume fraction on the toughness of steel. Mater Sci Eng A 464(1–2):321–329. doi: Google Scholar
  11. 11.
    Lankford J (1977) (E) Effect of oxide inclusions on fatigue failure. Int Metals Rev 22(1):221–228Google Scholar
  12. 12.
    Murakami Y (2002) Effects of Nonmetallic Inclusions on Fatigue Strength. Metal Fatigue, 75–127. Elsevier BV, Amsterdam. doi: Google Scholar
  13. 13.
    Niezgoda SR, Yabansu YC, Kalidindi SR (2011) Understanding and Visualizing Microstructure and Microstructure Variance as a Stochastic Process. Acta Mater 59:6387–6400Google Scholar
  14. 14.
    Niezgoda SR, Kanjarla AK, Kalidindi SR (2013) Novel microstructure quantification framework for databasing, visualization, and analysis of microstructure data. Integrating Materials and Manufacturing Innovation 2:3Google Scholar
  15. 15.
    Adams BL, Gao X, Kalidindi SR (2005) Finite approximations to the second-order properties closure in single phase polycrystals. Acta Mater 53(13):3563–3577. doi: Google Scholar
  16. 16.
    Brown WF (1955) Solid Mixture Permittivities. J Chem Phys 23(8):1514–1517Google Scholar
  17. 17.
    McDowell DL, Choi HJ, Panchal J, Austin R, Allen J, Mistree F (2007) Plasticity-Related Microstructure-Property Relations for Materials Design. Key Engineering Materials 340–341:21–30Google Scholar
  18. 18.
    Kalidindi SR (2013) Microstructure Informatics. Informatics for Materials Science and Engineering. Elsevier BV. doi: Google Scholar
  19. 19.
    Kalidindi SR (2015) Data science and cyberinfrastructure: critical enablers for accelerated development of hierarchical materials. Int Mater Rev 60(3):150–168Google Scholar
  20. 20.
    Torquato S (1991) Random heterogeneous media: microstructure and improved bounds on effective properties. Applied Mechanics Reviews 44(2):37–76Google Scholar
  21. 21.
    Gokhale AM, Tewari A, Garmestani H (2005) Constraints on microstructural two-point correlation functions. Scr Mater 53:989–993Google Scholar
  22. 22.
    Saheli G, Garmestani H, Gokhale A (2004) Effective Elastic Properties of an Al-SiC Composite Using Two-point Statistical Mechanics Approach. In: NUMIFORM, Ohio State University, Columbus, OH, June 10, 2004. AIP Conference Proceedings., pp 355–359Google Scholar
  23. 23.
    Baniassadi M, Mortazavi B, Hamedani HA, Garmestani H, Ahzi S, Fathi-Torbaghan M, Ruch D, Khaleel M (2012) Three-dimensional reconstruction and homogenization of heterogeneous materials using statistical correlation functions and FEM. Computational Materials Science 51(1):372–379. doi: Google Scholar
  24. 24.
    Baniassadi M, Garmestani H, Li DS, Ahzi S, Khaleel M, Sun X (2011) Three-phase solid oxide fuel cell anode microstructure realization using two-point correlation functions. Acta Mater 59(1):30–43. doi: Google Scholar
  25. 25.
    Li DS, Saheli G, Khaleel M, Garmestani H (2006) Quantitative prediction of effective conductivity in anisotropic heterogeneous media using two-point correlation functions. Computational Materials Science 38(1):45–50. doi: Google Scholar
  26. 26.
    Lee PS, Piehler HR, Rollett AD, Adams BL (2002) Texture clustering and long-range disorientation representation methods: application to 6022 aluminum sheet. Metallurgical and Materials Transactions A, 33(12), 3709–3718.Google Scholar
  27. 27.
    Yeong C, Torquato S (1998) Reconstructing random media. Phys Rev E 57(1):495Google Scholar
  28. 28.
    Schröder J, Balzani D, Brands D (2011) Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions. Archive of Applied Mechanics 81(7):975–997Google Scholar
  29. 29.
    Singh H, Gokhale A, Lieberman S, Tamirisakandala S (2008) Image based computations of lineal path probability distributions for microstructure representation. Mater Sci Eng A 474(1):104–111Google Scholar
  30. 30.
    Torquato S (2002) Random Heterogeneous Materials. Interdisciplinary Applied Mathematics, 16th edn. Springer-Verlag, New York. doi: Google Scholar
  31. 31.
    Li G, Liang Y, Zhu Z, Liu C (2003) Microstructural analysis of the radial distribution function for liquid and amorphous Al. J Phys Condens Matter 15(14):2259Google Scholar
  32. 32.
    Park SH, Lee DN (1988) A study on the microstructure and phase transformation of electroless nickel deposits. J Mater Sci 23(5):1643–1654Google Scholar
  33. 33.
    Rollett AD, Lebensohn RA, Groeber M, Choi Y, Li J, Rohrer GS (2010) Stress hot spots in viscoplastic deformation of polycrystals. Modelling and Simulation in Materials Science and Engineering 18(7):Artn 074005. doi: Google Scholar
  34. 34.
    Fullwood DT, Niezgoda SR, Adams BL, Kalidindi SR (2010) Microstructure sensitive design for performance optimization. Progress in Materials Science 55(6):477–562. doi: Google Scholar
  35. 35.
    Niezgoda SR, Fullwood DT, Kalidindi SR (2008) Delineation of the space of 2-point correlations in a composite material system. Acta Mater 56(18):5285–5292. doi: Google Scholar
  36. 36.
    Fullwood DT, Niezgoda SR, Kalidindi SR (2008) Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater 56(5):942–948. doi: Google Scholar
  37. 37.
    Kalidindi SR, Niezgoda SR, Salem AA (2011) Microstructure informatics using higher-order statistics and efficient data-mining protocols. JOM 63(4):34–41Google Scholar
  38. 38.
    Niezgoda SR, Turner DM, Fullwood DT, Kalidindi SR (2010) Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics. Acta Mater 58(13):4432–4445. doi: Google Scholar
  39. 39.
    Adams BL, Kalidindi S, Fullwood DT (2013) Microstructure-sensitive design for performance optimization. Butterworth-Heinemann, WalthamGoogle Scholar
  40. 40.
    Debye P, Anderson HR, Brumberger H (1957) Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application. J Appl Phys 28(6):679–683. doi: Google Scholar
  41. 41.
    Fullwood DT, Kalidindi SR, Niezgoda SR, Fast A, Hampson N (2008) Gradient-based microstructure reconstructions from distributions using fast Fourier transforms. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 494(1–2):68–72. doi: Google Scholar
  42. 42.
    Qidwai SM, Turner DM, Niezgoda SR, Lewis AC, Geltmacher AB, Rowenhorst DJ, Kalidindi SR (2012) Estimating response of polycrystalline materials using sets of weighted statistical volume elements (WSVEs). Acta Mater 60:5284–5299Google Scholar
  43. 43.
    Gupta A, Cecen A, Goyal S, Singh AK, Kalidindi SR (2015) Structure–property Linkages for Non-Metallic Inclusions/Steel Composite System using a Data Science Approach. Acta Mater 91:239–254Google Scholar
  44. 44.
    CeCen A, Fast T, Kumbur EC, Kalidindi SR (2014) A Data-driven Approach to Establishing Microstructure-Property Relationships in Porous Transport Layers of Polymer Electrolyte Fuel Cells. J Power Sources 245:144–153Google Scholar
  45. 45.
    Kröner E (1986) Statistical Modelling. In: Gittus J, Zarka J (eds) Modelling Small Deformations of Polycrystals. Springer, Netherlands, pp 229–291. doi: Google Scholar
  46. 46.
    Milton GW (2002) The theory of composites. Cambridge monographs on applied and computational mathematics. Cambridge university press, CambridgeGoogle Scholar
  47. 47.
    Fullwood DT, Adams BL, Kalidindi SR (2008) A strong contrast homogenization formulation for multi-phase anisotropic materials. J Mech Phys Solids 56(6):2287–2297. doi: Google Scholar
  48. 48.
    Saheli G, Garmestani H, Adams BL (2004) Microstructure design of a two phase composite using two-point correlation functions. J Computer-Aided Materials Design 11(2–3):103–115Google Scholar
  49. 49.
    Garmestani H, Lin S, Adams BL, Ahzi S (2001) Statistical Continuum Theory for Large Plastic Deformation of Polycrystalline Materials. J Mech Phys Solids 49(3):589–607Google Scholar
  50. 50.
    Mason TA, Adams BL (1999) Use of microstructural statistics in predicting polycrystalline material properties. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 30(4):969–979. doi: Google Scholar
  51. 51.
    Adams BL, Olson T (1998) The mesostructure--properties linkage in polycrystals. Progress Mater Sci 43(1):1–87Google Scholar
  52. 52.
    Beran MJ, Mason TA, Adams BL, Olsen T (1996) Bounding elastic constants of an orthotropic polycrystal using measurements of the microstructure. J Mech Physics Solids 44(9):1543–1563Google Scholar
  53. 53.
    Binci M, Fullwood D, Kalidindi SR (2008) A new spectral framework for establishing localization relationships for elastic behavior of composites and their calibration to finite-element models. Acta Mater 56(10):2272–2282. doi: Google Scholar
  54. 54.
    Kalidindi SR, Binci M, Fullwood D, Adams BL (2006) Elastic properties closures using second-order homogenization theories: Case studies in composites of two isotropic constituents. Acta Mater 54(11):3117–3126. doi: Google Scholar
  55. 55.
    Yabansu YC, Patel DK, Kalidindi SR (2014) Calibrated localization relationships for elastic response of polycrystalline aggregates. Acta Mater 81:151–160Google Scholar
  56. 56.
    Yabansu YC, Kalidindi SR (2015) Representation and calibration of elastic localization kernels for a broad class of cubic polycrystals. Acta Mater 94:26–35Google Scholar
  57. 57.
    Wargo EA, Hanna AC, Cecen A, Kalidindi SR, Kumbur EC (2012) Selection of Representative Volume Elements for Pore-Scale Analysis of Transport in Fuel Cell Materials. J Power Sources 197:168–179Google Scholar
  58. 58.
    Steinmetz P, Yabansu YC, Hötzer J, Jainta M, Nestler B, Kalidindi SR (2016) Analytics for microstructure datasets produced by phase-field simulations. Acta Mater 103:192–203. doi: Google Scholar
  59. 59.
    Kalidindi SR, Gomberg JA, Trautt ZT, Becker CA (2015). Application of data science tools to quantify and distinguish between structures and models in molecular dynamics datasets. Nanotechnology, 26(34), 344006.Google Scholar
  60. 60.
    Dong X, McDowell DL, Kalidindi SR, Jacob KI (2014) Dependence of mechanical properties on crystal orientation of semi-crystalline polyethylene structures. Polymer 55(16):4248–4257. doi: Google Scholar
  61. 61.
    Salem AA, Shaffer JB, Satko DP, Semiatin SL, Kalidindi SR (2014) Workflow for integrating mesoscale heterogeneities in materials structure with process simulation of titanium alloys. Integrating Materials and Manufacturing Innovation 3(1):1–22. doi: Google Scholar
  62. 62.
    Gonzalez RC, Woods RE (2008) Digital Image Processing. Pearson Prentice Hall, Upper Saddle River, NJ.Google Scholar
  63. 63.
    Pratt WK (2006) Linear Processing Techniques. In: Digital Image Processing. John Wiley & Sons, Inc., pp 217–244. doi:
  64. 64.
    Oppenheim AV, Schafer RW, Buck JR (1989) Discrete-time signal processing, vol 2. Prentice-hall, Englewood CliffsGoogle Scholar
  65. 65.
    Svoboda D (2011) Efficient computation of convolution of huge images. Image Analysis and Processing–ICIAP 2011. Springer, Berlin, pp 453–462 doi:10.1007/978-3-642-24085-0_47Google Scholar

Copyright information

© Cecen et al. 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Computational Science & Engineering Georgia Institute of TechnologyAtlantaUSA
  2. 2.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations