1 Introduction

Chistyakov [69] rectified in absorbing manner the structure of a metric modular space and introduced a first countable and Hausdorff topology on it which is very popular in contemporary research these days.

Now, we study the concept of the Hausdorff distance of a given generalized metric modular space on nonempty compact subsets. As an application, we use the concept of contraction and the iterated function system (IFS) on a generalized metric modular space to define a new concept of modular fractal spaces and prove an interesting fixed point theorem in these spaces [1, 2, 7, 8, 10, 11].

2 Basic notions and preliminaries

Now, we recall some notions and basic concepts. Here, we let \(\mathbb{I}=[0,1]\), \(\mathbb{I}^{0}=(0,1)\), \(\mathbb{J}=[0,\infty ]\), and \(\mathbb{J}^{0}=(0,\infty )\). Let S be a nonempty set. A function \(\theta : S\times S\times \mathbb{J}^{0}\to \mathbb{J}\) is said to be a metric modular (in short MM) on S if it satisfies the following three axioms:

(i) Given \(u,v\in X\), \(\theta _{\lambda }(u,v)=0\) for all \(\lambda >0\) if and only if \(u=v\);

(ii) \(\theta _{\lambda }(u,v)=\theta _{\lambda }(v,u)\) for all \(\lambda >0\) and \(u,v\in S\);

(iii) \(\theta _{\lambda +\mu }(u,v)\leq \theta _{\lambda }(u,w)+\theta _{\mu }(w,v)\) for all \(\lambda ,\mu >0\) and \(u,v,w\in S\). Also, the ordered pair \((S,\theta )\) is said to be an MM-space.

Consider a mapping \(\Upsilon : S^{3}\times \mathbb{J}^{0}\rightarrow \mathbb{J}\), given by \(\Upsilon _{\sigma }(s,t,u)=\Upsilon (s,t,u,\sigma )\), in which \(\sigma \in \mathbb{J}^{0}\) and \(s,t,u\in S\). In this paper, we consider a generalized metric space in the sense of Chistyakov and introduce the concept of generalized modular metric space (in short, GMM-space) as follows.

Definition 2.1

([3])

Let S be a nonempty set. A function \(\Upsilon :S\times S\times S\times \mathbb{J}^{0}\rightarrow \mathbb{J}\) is said to be a generalized modular metric on S (in short GMM) if it satisfies the following five axioms:

(GMM-1) \(\Upsilon _{\sigma }(s,s,u)\in \mathbb{J}^{0}\) for all \(s,u\in S\) and \(\sigma \in \mathbb{J}^{0}\) with \(s\neq u\).

(GMM-2) \(\Upsilon _{\sigma }(s,t,u)=0\) for all \(s,t,u\in S\) and \(\sigma \in \mathbb{J}^{0}\) if \(s=t=u\).

(GMM-3) \(\Upsilon _{\sigma }(s,s,u)\leq \Upsilon _{\sigma }(s,t,u)\) for all \(s,t,u\in S\) and \(\sigma \in \mathbb{J}^{0}\) with \(t\neq u\).

(GMM-4) \(\Upsilon _{\sigma }(s,t,u)=\Upsilon _{\sigma }(s,u,t)=\Upsilon _{ \sigma }(u,s,t)=\cdots \) for all \(\sigma \in \mathbb{J}^{0}\).

(GMM-5) \(\Upsilon _{\sigma +\delta }(s,t,u)\leq \Upsilon _{\sigma }(s,v,v)+ \Upsilon _{\delta }(v,t,u)\) for all \(s,t,u\in S\) and \(\sigma ,\delta \in \mathbb{J}^{0}\). Also the ordered pair \((S,\Upsilon )\) is said to be a GMM-space.

Definition 2.2

([3])

Let us fix an arbitrary element \(s_{0}\in S\) and set \(S_{\Upsilon }=\{t\in S; \lim_{\sigma \rightarrow 0}\Upsilon _{ \sigma }(s_{0}, t,u)=0 \text{ for some } u\in S\}\). The set \(S_{\Upsilon }\) is called a modular set.

Proposition 2.3

([3])

Let \((S,\Upsilon )\) be a GMM-space, for any \(s,t,u,v\in S\) it follows that

(1) If \(\Upsilon _{\sigma }(s,t,u)=0\) for all \(\sigma >0\), then \(s=t=u\).

(2) \(\Upsilon _{\sigma }(s,t,u)\leq \Upsilon _{\frac{\sigma }{2}}(s,s,t)+ \Upsilon _{\frac{\sigma }{2}}(s,s,u)\) for all \(\sigma >0\).

(3) \(\Upsilon _{\sigma }(s,t,t)\leq 2\Upsilon _{\frac{\sigma }{2}}(s,s,t)\) for all \(\sigma >0\).

(4) \(\Upsilon _{\sigma }(s,t,u)\leq \Upsilon _{\frac{\sigma }{2}}(s,v,u)+ \Upsilon _{\frac{\sigma }{2}}(v,t,u)\) for all \(\sigma >0\).

(5) \(\Upsilon _{\sigma }(s,t,u)\leq \frac{2}{3} (\Upsilon _{ \frac{\sigma }{2}}(s,t,v)+\Upsilon _{\frac{\sigma }{2}}(s,v,u)+ \Upsilon _{\frac{\sigma }{2}}(v,t,u) )\) for all \(\sigma >0\).

(6) \(\Upsilon _{\sigma }(s,t,u)\leq (\Upsilon _{\frac{\sigma }{2}}(s,u,v)+ \Upsilon _{\frac{\sigma }{4}}(t,v,v)+\Upsilon _{\frac{\sigma }{4}}(u,v,v) )\) for all \(\sigma >0\).

If \((S,\theta )\) is an MM-space, then \((S,\theta )\) can define a GMM-space on S by

\((E_{x})\) \(\Upsilon _{\sigma }^{x}(s,t,u)=\frac{1}{3}\{\theta _{\sigma }(s,t)+ \theta _{\sigma }(t,u)+\theta _{\sigma }(s,u)\}\),

\((E_{m})\) \(\Upsilon _{\sigma }^{m}(s,t,u)=\max \{\theta _{\sigma }(s,t)+\theta _{ \sigma }(t,u)+\theta _{\sigma }(s,u)\}\) for all \(\sigma >0\).

We showed that a modular metric (MM) can introduce a generalized modular metric (GMM). Now, we study the converse, consider the GMM \(\Upsilon _{\sigma }\) on S, then \((E_{\theta }) \theta _{\sigma }^{\Upsilon }(s,t)=\Upsilon _{\sigma }(s,t,t)+\Upsilon _{ \sigma }(s,s,t)\) defines a modular metric MM on S for all \(\sigma \in \mathbb{J}^{0}\). Also, there are the following relationships among \(\Upsilon _{\sigma }\), \(\Upsilon _{\sigma }^{x}\), and \(\Upsilon _{\sigma }^{m}\):

$$ \Upsilon _{\sigma }(s,t,u)\leq \Upsilon _{\sigma }^{x}(s,t,u) \leq 2 \Upsilon _{\sigma }(s,t,u) $$

and

$$ \frac{1}{2}\Upsilon _{\sigma }(s,t,u)\leq \Upsilon _{\sigma }^{m}(s,t,u) \leq 2\Upsilon _{\sigma }(s,t,u) $$

for all \(\sigma >0\).

By the following equalities we can find the relationships among modular metrics induced by different GMMs. For \(s,t\in S\), it is easy to show \(\theta _{\sigma }^{\Upsilon ^{x}}(s,t)=\frac{4}{3}\theta _{\sigma }(s,t)\) and \(\theta _{\sigma }^{\Upsilon ^{m}}(s,t)=2\theta _{\sigma }(s,t)\) for all \(\sigma >0\).

Definition 2.4

([3])

Let \((S,\Upsilon )\) be a GMM-space. Then, for \(s_{0}\in S_{\Upsilon }\) and \(\varepsilon >0\), the ϒ-ball with center \(s_{0}\) and radius ε is

$$B_{\Upsilon }(s_{0},\varepsilon )=\bigl\{ t\in S_{\Upsilon }: \Upsilon _{ \sigma }(s_{0},t,t)< \varepsilon \text{ for all } \sigma >0\bigr\} . $$

Proposition 2.5

([3])

Let \((S,\Upsilon )\) be a GMM-space. Then, for any \(s_{0}\in S_{\Upsilon }\) and \(\varepsilon >0\), we have

(i) if \(\Upsilon _{\sigma }(s_{0},s,t)<\varepsilon \) for all \(\sigma >0\), then \(s,t\in B_{\Upsilon }(s_{0},\varepsilon )\).

(ii) if \(t\in B_{\Upsilon }(s_{0},\varepsilon )\), then we can find \(\delta >0\) such that \(B_{\Upsilon }(t,\delta )\subseteq B_{\Upsilon }(s_{0},\varepsilon )\).

From Proposition 2.5 we can conclude that the family of all ϒ-balls \(\Gamma =\{B_{\Upsilon }(s,\varepsilon )|s\in S, \varepsilon >0\}\) is the base of a topology \(\mathcal{T}(\Upsilon _{\sigma })\) on \(S_{\Upsilon }\).

Definition 2.6

([3])

Let \((S,\Upsilon )\) be a GMM-space. The sequence \(\{s_{n}\}_{n\in \mathbb{N}}\subseteq S_{\Upsilon }\) is ϒ-convergent to s if it converges to s in the topology \(\mathcal{\mathcal{T}}(\Upsilon _{\sigma })\).

Proposition 2.7

([3])

Let \((S,\Upsilon )\) be a GMM-space and \(\{s_{n}\}_{n\in \mathbb{N}}\subseteq S_{\Upsilon }\).

Then the following are equivalent:

(1) \(\{s_{n}\}_{n\in \mathbb{N}}\) is ϒ-convergent to s;

(2) \(\theta _{\sigma }^{\Upsilon }(s_{n},s)\rightarrow 0\) as \(n\rightarrow \infty \), i.e., \(\{s_{n}\}\) converges to s relative to the MM \(\theta _{\sigma }^{\Upsilon }\);

(3) \(\Upsilon _{\sigma }(s_{n},s_{n},s)\rightarrow 0\) as \(n\rightarrow \infty \) for all \(\sigma >0\);

(4) \(\Upsilon _{\sigma }(s_{n},s,s)\rightarrow 0\) as \(n\rightarrow \infty \) for all \(\sigma >0\);

(5) \(\Upsilon _{\sigma }(s_{m},s_{n},s)\rightarrow 0\) as \(m,n\rightarrow \infty \) for all \(\sigma >0\).

Definition 2.8

([3])

Let \((S,\Upsilon )\) be a GMM-space. Then \(\{s_{n}\}_{n\in \mathbb{N}}\subseteq S_{\Upsilon }\) is called ϒ-Cauchy sequence if, for every \(\varepsilon >0\), we can find \(N_{\varepsilon }\in \mathbb{N}\) such that \(\Upsilon _{\sigma }(s_{n},s_{m},s_{q})<\varepsilon \) for all \(n,m,q\geq N_{\varepsilon }\) and \(\sigma >0\).

A GMM-space S is called ϒ-complete if every ϒ-Cauchy sequence in S is a ϒ-convergent sequence in S.

Proposition 2.9

([3])

Let \((S,\Upsilon )\) be a GMM-space and \(\{s_{n}\}_{n\in \mathbb{N}}\subseteq S_{\Upsilon }\). Then the following are equivalent:

(1) \(\{s_{n}\}_{n\in \mathbb{N}}\) is ϒ-Cauchy.

(2) For each \(\varepsilon >0\), we can find \(N_{\varepsilon }\in \mathbb{N}\) such that \(\Upsilon _{\sigma }(s_{n},s_{m},s_{m})<\varepsilon \) for every \(n,m\geq N_{\varepsilon }\) and \(\sigma >0\).

(3) \(\{s_{n}\}_{n\in \mathbb{N}}\) is a Cauchy sequence in the MM-space \((S,\theta _{\sigma }^{\Upsilon })\).

Consider the GMM-space \((S,\Upsilon )\). Let the set of nonempty subsets, the set of nonempty finite subsets, and the set of nonempty compact of \((S,\mathcal{T}_{\Upsilon })\) be denoted respectively by \(\mathfrak{\Gamma _{0}}(S)\), \(\mathfrak{f_{0}}(S)\), and \(\mathfrak{R_{0}}(S)\).

Proposition 2.10

([3])

Let \((S,\Upsilon )\) be a GMM-space. Then ϒ is a continuous function on \(S\times S\times S\times \mathbb{J}^{0}\).

Let T and U be two (nonempty) subsets of a GMM-space \((S,\Upsilon )\).

For \(s\in S\) and \(\sigma >0\), let \(\Upsilon _{\sigma }(s, T, U):=\inf \{\Upsilon _{\sigma }(s,t,u): t\in T,u \in U\}\).

Lemma 2.11

Let \((S,\Upsilon )\) be a GMM-space. Then, for each \(s\in S\), \(T,U\in \mathfrak{R_{0}}(S)\) and \(\sigma \in \mathbb{J}^{0}\), there are \(t_{0}\in T\), \(u_{0}\in U\) such that \(\Upsilon _{\sigma }(s,T,U)=\Upsilon _{\sigma }(s,t_{0},u_{0})\).

Proof

Let \(s\in S\), \(T,U\in \mathfrak{R_{0}}(S)\) and \(\sigma >0\). By Proposition 2.10, the functions \(t\mapsto \Upsilon _{\sigma }(s,t,u)\), \(u\mapsto \Upsilon _{\sigma }(s,t,u)\) are continuous. Thus, by compactness of T and U, there exists \(t_{0}\in T\), \(u_{0}\in U\) such that \(\inf_{t\in T,u\in U}\Upsilon _{\sigma }(s,t,u)=\Upsilon _{ \sigma }(s,t_{0},u_{0})\), i.e., \(\Upsilon _{\sigma }(s,T,U)=\Upsilon _{\sigma }(s,t_{0},u_{0})\). □

Lemma 2.12

Let \((S,\Upsilon )\) be a GMM-space. Then, for each \(s\in S\) and \(T,U\in \mathfrak{R_{0}}(S)\), the function \(\sigma \mapsto \Upsilon _{\sigma }(s,T,U)\) is continuous on \(\mathbb{J}^{0}\).

Proof

The equality \(\Upsilon _{\sigma }(s,T,U)=\inf_{t\in T,u\in U}\Upsilon _{ \sigma }(s,t,u)\) and the continuity property of the function \(\sigma \mapsto \Upsilon _{\sigma }(s,t,u)\) for each \(t\in T\) and \(u\in U\) on \(\mathbb{J}^{0}\) imply the upper semi-continuity \(\sigma \mapsto \Upsilon _{\sigma }(s,T,U)\) on \(\mathbb{J}^{0}\). Consider \(\sigma \in \mathbb{J}^{0}\), and let the sequence \((\sigma _{n})_{n}\) in \(\mathbb{J}^{0}\) converge to σ. Using Lemma 2.11 implies that we can find \(t_{n}\in T\) and \(u_{n}\in U\) for every \(n\in \mathbb{N}\) such that \(\Upsilon _{\sigma }(s,T,U)=\Upsilon _{\sigma _{n}}(s,t_{n},u_{n})\). From \(T,U\in \mathfrak{R_{0}}(S)\), we can find \((t_{n_{k}})_{k}\) of \((t_{n})_{n}\) \((u_{n_{k}})_{k}\) of \((u_{n})_{n}\) and two points \(t_{0}\in T\) and \(u_{0}\in U\) such that \(t_{n_{k}}\rightarrow t_{0}\) and \(u_{n_{k}}\rightarrow u_{0}\) in \((S,\Upsilon )\). Hence \(\lim_{k}\Upsilon _{\sigma _{n_{k}}}(s,t_{n_{k}},u_{n_{k}})= \Upsilon _{\sigma }(s,t_{0},u_{0})\) by Proposition 2.10, and thus \(\lim_{k}\Upsilon _{\sigma _{n_{k}}}(s,T,U)=\Upsilon _{ \sigma }(s,t_{0},u_{0})\geq \Upsilon _{\sigma }(s,T,U)\). Consequently, \(\sigma \mapsto \Upsilon _{\sigma }(s,T,U)\) is lower semi-continuous on \(\mathbb{J}^{0}\). □

Lemma 2.13

Consider the GMM-space \((S,\Upsilon )\). Then, for every \(T\in \mathfrak{R_{0}}(S)\), \(U,V\in \mathfrak{\Gamma _{0}}(S)\) and \(\sigma \in \mathbb{J}^{0}\), we can find \(t_{0}\in T\) such that

$$\begin{aligned} \sup \Upsilon _{\sigma }(T,U,V)=\Upsilon _{\sigma }(t_{0},U,V). \end{aligned}$$

Proof

Put \(\delta =\sup_{t\in T}\Upsilon _{\sigma }(t,U,V)\). Then we can find a sequence \((t_{n})_{n}\) in T such that \(\delta -\frac{1}{n}<\Upsilon _{\sigma }(t_{n},U,V)\) in which \(n\in \mathbb{N}\). From \(T\in \mathfrak{R_{0}}(S)\), we can find a subsequence \((t_{n_{k}})_{k}\) of \((t_{n})_{n}\) and \(t_{0}\in T\) such that \(t_{n_{k}}\rightarrow t_{0}\) in \((S,\Upsilon )\).

Select \(u\in U\), \(v\in V\). According to Proposition 2.10,

$$\begin{aligned} \lim_{k}\Upsilon _{\sigma }(t_{n_{k}},u,v)= \Upsilon _{\sigma }(t_{0},u,v). \end{aligned}$$

Since, for each \(k\in \mathbb{N}\), \(\delta -\frac{1}{n_{k}}<\Upsilon _{\sigma }(t_{n_{k}},u,v)\), we get \(\delta \leq \Upsilon _{\sigma }(t_{0},u,v)\). We conclude that \(\delta =\Upsilon _{\sigma }(t_{0},U,V)\). □

Now, Lemmas 2.12 and 2.13 imply the next result.

Corollary 2.14

Consider the GMM-space \((S,\Upsilon )\). Assume that \(T,U,V\in \mathfrak{R_{0}}(S)\) and \(\sigma \in \mathbb{J}^{0}\). Then we can find \(t_{0}\in T\), \(u_{0}\in U\), and \(v_{0}\in V\) such that

$$\begin{aligned} \sup_{t\in T}\Upsilon _{\sigma }(t,U,V)=\Upsilon _{\sigma }(t_{0},u_{0},v_{0}). \end{aligned}$$

Proposition 2.15

Consider the GMM-space \((S,\Upsilon )\). Then, for each \(T,U,V\in \mathfrak{R_{0}}(S)\), the function \(\delta \mapsto \sup_{t\in T}\Upsilon _{\sigma }(t,U,V)\) is continuous on \(\mathbb{J}^{0}\).

Proof

It is easily proved by using Lemma 2.13, Lemma 2.12, and Proposition 2.10. □

Remark 2.16

([3])

Note that for \(s,t,u\in S\) the function \(0<\sigma \mapsto \Upsilon _{\sigma }(s,t,u)\in {\mathbb{J}}\) is nonincreasing on \(\mathbb{J}^{0}\).

3 GMM-Hausdorff distance on \(\mathfrak{R_{0}}(S)\)

Consider the GMM-space \((S,\Upsilon )\). We define a function \(H_{\Upsilon }\) on \(\mathfrak{R_{0}}(S)\times \mathfrak{R_{0}}(S)\times \mathfrak{R_{0}}(S) \times \mathbb{J}^{0}\) by

$$\begin{aligned} H_{\Upsilon }(T,U,V,\sigma )=\max \Bigl\{ \sup_{t\in T} \Upsilon _{ \sigma }(t,U,V),\sup_{u\in U}\Upsilon _{\sigma }(T,u,V),\sup_{v\in V} \Upsilon _{\sigma }(T,U,v) \Bigr\} \end{aligned}$$

for every \(T,U,V\in \mathfrak{R_{0}}(S)\) and \(\sigma \in \mathbb{J}^{0}\).

Lemma 3.1

Consider the GMM-space \((S,\Upsilon )\), \(s\in S\), \(T,U\in \mathfrak{R_{0}}(S)\), \(V\in \mathfrak{\Gamma _{0}}(S)\), and \(\alpha ,\beta \in \mathbb{J}^{0}\). Then

$$\begin{aligned} \Upsilon _{\alpha +\beta }(s,T,V)\leq \Upsilon _{\alpha }(s,U,U)+ \Upsilon _{\beta }(u_{s},T,V), \end{aligned}$$

where \(u_{s}\in U\) satisfies \(\Upsilon _{\alpha }(s,U,U)=\Upsilon _{\alpha }(s,u_{s},u_{s})\).

Proof

Using Lemma 2.11, for \(u_{s}\in U\), we have \(\Upsilon _{\alpha }(s,U,U)=\Upsilon _{\alpha }(s,u_{s},u_{s})\). Now, for each \(t\in T\), \(v\in V\), we have

$$\begin{aligned} \Upsilon _{\alpha +\beta }(s,T,V)\leq \Upsilon _{\alpha +\beta }(s,t,v) \leq \Upsilon _{\alpha }(s,u_{s},u_{s})+\Upsilon _{\beta }(u_{s},t,v). \end{aligned}$$

Then \(\Upsilon _{\alpha +\beta }(s,T,V)\leq \Upsilon _{\alpha }(s,U,U)+ \Upsilon _{\beta }(u_{s},T,V)\). □

Theorem 3.2

Consider the GMM-space \((S,\Upsilon )\). Then \((\mathfrak{R_{0}}(S),H_{\Upsilon })\) is a GMM-space.

Proof

Suppose that \(T,U,V,W\in \mathfrak{R_{0}}(S)\) and \(\alpha ,\beta \in \mathbb{J}^{0}\). By Lemma 2.13, there exist \(t_{0}\in T\), \(u_{0}\in U\), and \(v_{0}\in V\) such that \(\sup_{t\in T}\Upsilon (t,U,V)=\Upsilon (t_{0},U,V)\), \(\sup_{u\in U}\Upsilon (T,u,V)=\Upsilon (T,u_{0},V)\), and \(\sup_{v\in V}\Upsilon (T,U,v)=\Upsilon (T,U,v_{0})\).

Then \(H_{\Upsilon }(T,U,V,\alpha )\geq 0\). Furthermore, it is obvious that

$$\begin{aligned} T=U=V\Leftrightarrow H_{\Upsilon }(T,U,V,\alpha )=0. \end{aligned}$$

Now, according to Lemma 3.1, we have

$$\begin{aligned} \sup_{t\in T}\Upsilon _{\alpha +\beta }(t,U,W)\leq \sup _{t\in T}\Upsilon _{\alpha }(t,V,V)+\sup _{t\in T} \Upsilon _{\beta }(v_{t},U,W). \end{aligned}$$

Since \(\{v_{t}:t\in T\}\subseteq V\), \(\sup_{t\in T}\Upsilon _{\beta }(v_{t},U,W)\leq \sup_{v \in V}\Upsilon _{\beta }(v,U, W)\), so

$$\begin{aligned} \sup_{t\in T}\Upsilon _{\alpha +\beta }(t,U,W)\leq \sup _{t\in T}\Upsilon _{\alpha }(t,V,V)+\sup _{v\in V}\Upsilon _{ \beta }(v,U,W). \end{aligned}$$

In the same way, we obtain

$$\begin{aligned} \sup_{u\in U}\Upsilon _{\alpha +\beta }(T,u,W)&\leq \sup _{u\in U}\Upsilon _{\alpha }(u,V,V)+\sup _{v\in V} \Upsilon _{\beta }(v,T,W), \\ \sup_{w\in W}\Upsilon _{\alpha +\beta }(T,U,w)&\leq \sup _{w\in W}\Upsilon _{\alpha }(w,V,V)+\sup _{v\in V} \Upsilon _{\beta }(v,T,W). \end{aligned}$$

Then, it easily follows that

$$\begin{aligned} H_{\Upsilon }(T,U,W,\alpha +\beta )\leq H_{\Upsilon }(T,V,V,\alpha )+H_{ \Upsilon }(V,U,W,\beta ). \end{aligned}$$

By Proposition 2.15, we conclude that \(\alpha \mapsto H_{\Upsilon }(T,U,V,\alpha )\) is continuous on \(\mathbb{J}^{0}\).

Then \((\mathfrak{R_{0}}(S),H_{\Upsilon })\) is a GMM-space. □

4 ϒ-Cauchy sequences in a GMM-space

In this section we study ϒ-Cauchy sequences in a GMM-space.

Lemma 4.1

Consider the GMM-space \((S,\Upsilon )\). For each \(\mu \in \mathbb{J}^{0}\), define a function \(F_{\mu ,\Upsilon }(s,t, u)=\inf \{\sigma >0,\Upsilon _{\sigma }(s,t,u)< \mu \}\) for any \(s,t,u\in S\). Then

(i) For any \(\lambda \in \mathbb{J}^{0}\), we can find \(\mu \in \mathbb{J}^{0}\) such that

$$\begin{aligned} F_{\lambda ,\Upsilon }(s_{0},s_{m},s_{m}) \leq \sum_{i=0}^{m-1}F_{\mu , \Upsilon }(s_{i},s_{i+1},s_{i+1}) \end{aligned}$$
(4.1)

for all \(s_{0},s_{1},\ldots ,s_{m}\in S\).

(ii) Let \(\{s_{n}\}_{n}\) be a convergent sequence in a GMM-space \((S,\Upsilon )\), then we have \(F_{\lambda ,\Upsilon }(s,s_{n}, s_{n})\rightarrow 0\) and vice versa.

Proof

(i) For every \(\lambda \in \mathbb{J}^{0}\), we can find \(\mu \in \mathbb{J}^{0}\) such that \(m\mu <\lambda \). For any given \(m\in \mathbb{Z}^{+}\), we put

$$\begin{aligned} F_{\mu ,\Upsilon }(s_{i},s_{i+1},s_{i+1})= \sigma _{i} \end{aligned}$$
(4.2)

for \(i=0,1,2,\ldots ,m-1\).

For every \(\varepsilon >0\), it is obvious that \(F_{\mu ,\Upsilon }(s_{i},s_{i+1},s_{i+1})<\sigma _{i}+ \frac{\varepsilon }{m}\), in which \(i=0,1,\ldots ,m-1\). Then \(\Upsilon _{\sigma _{i}+\frac{\varepsilon }{m}}(s_{i},s_{i+1},s_{i+1})< \mu \) for \(i=0,1,\ldots ,m-1\). Now, using (GMM-5), we get

$$\begin{aligned} &\Upsilon _{\sigma _{0}+\sigma _{1}+\cdots +\sigma _{m-1}+ \varepsilon }(s_{0},s_{m},s_{m}) \\ &\quad \leq \Upsilon _{\sigma _{0}+\frac{\varepsilon }{m}}(s_{0},s_{1},s_{1}) +\cdots +\Upsilon _{\sigma _{m-1}+\frac{\varepsilon }{m}}(s_{m-1},s_{m},s_{m}) \\ &\quad < \underbrace{\mu +\cdots +\mu }_{m}< \lambda , \end{aligned}$$
(4.3)

which implies that

$$\begin{aligned} F_{\lambda ,\Upsilon }(s_{0},s_{m},s_{m})\leq \sigma _{0}+\sigma _{1}+ \cdots +\sigma _{m-1}+ \varepsilon . \end{aligned}$$

Using (4.2) we get

$$\begin{aligned} F_{\lambda ,\Upsilon }(s_{0},s_{m},s_{m}) \leq \sum_{i=0}^{m-1}F_{\mu , \Upsilon }(s_{i},s_{i+1},s_{i+1})+ \varepsilon \end{aligned}$$
(4.4)

for all \(s_{0},s_{1},\ldots ,s_{m}\in S\). Tending ε to 0 in (4.4) implies that (4.1).

(ii) We have \(\Upsilon _{\eta }(s,s_{n},s_{n})<\lambda \Leftrightarrow F_{\lambda , \Upsilon }(s,s_{n},s_{n})<\eta \) for every \(\eta >0\). □

Lemma 4.2

Consider the GMM-space \((S,\Upsilon )\). If \(\Upsilon _{\sigma }(s,t,u)=C\) for every \(s,t,u\in S\) and \(\sigma \in \mathbb{J}^{0}\), then

$$\begin{aligned} C=0. \end{aligned}$$
(4.5)

Proof

Putting \(s=t=u\) in (4.5), we get \(C=0\). □

Here, we consider a class of mappings \(\phi :\mathbb{J}^{0}\rightarrow \mathbb{J}^{0}\) which are onto, strictly increasing, and \(\phi (\sigma )<\sigma \) for all \(\sigma \in \mathbb{J}^{0}\).

Lemma 4.3

Consider the GMM-space \((S,\Upsilon )\). Then

$$\begin{aligned} \inf \bigl\{ \phi ^{n}(\sigma )>0:\Upsilon _{\sigma }(s,t,u)< \lambda \bigr\} \leq \phi ^{n} \bigl(\inf \bigl\{ \sigma >0:\Upsilon _{\sigma }(s,t,u)< \lambda \bigr\} \bigr) \end{aligned}$$

for each \(s,t,u\in S\), \(\lambda \in \mathbb{J}^{0}\), and \(n\in \mathbb{N}\).

Proof

Fix \(\sigma \in \mathbb{J}^{0}\) with \(\Upsilon _{\sigma }(s,t,u)<\lambda \). Then \(\phi ^{n}(\sigma )\in \mathbb{J}^{0}\). Also \(\phi ^{n}(\sigma )\geq \inf \{\phi ^{n}(\delta )>0:\Upsilon _{\delta }(s,t,u)< \lambda \}\), and so we have

$$\begin{aligned} \sigma \geq \bigl(\phi ^{n}\bigr)^{-1} \bigl(\inf \bigl\{ \phi ^{n}(\delta )>0: \Upsilon _{\delta }(s,t,u)< \lambda \bigr\} \bigr). \end{aligned}$$

Then

$$\begin{aligned} \inf \bigl\{ \sigma >0,\Upsilon _{\sigma }(s,t,u)< \lambda \bigr\} \geq \bigl(\phi ^{n}\bigr)^{-1} \bigl(\inf \bigl\{ \phi ^{n}(\delta )>0:\Upsilon _{\delta }(s,t,u)< \lambda \bigr\} \bigr), \end{aligned}$$

and we conclude that

$$\begin{aligned} \inf \bigl\{ \phi ^{n}(\sigma )>0:\Upsilon _{\sigma }(s,t,u)< \lambda \bigr\} \leq \phi ^{n} \bigl(\inf \bigl\{ \sigma >0:\Upsilon _{\sigma }(s,t,u)< \lambda \bigr\} \bigr). \end{aligned}$$

 □

Lemma 4.4

Consider the GMM-space \((S,\Upsilon )\). Suppose that \(\{s_{n}\}\subseteq S\) such that \(\Upsilon _{\phi ^{n}(\sigma )}(s_{n}, s_{n+1},s_{n+1})\leq \Upsilon _{ \sigma }(s_{0},s_{1},s_{1})\) for all \(\sigma \in \mathbb{J}^{0}\). Then \(\{s_{n}\}\) is a ϒ-Cauchy sequence.

Proof

Using Lemma 4.3, we get

$$\begin{aligned} F_{\mu ,\Upsilon }(s_{n},s_{n+1},s_{n+1})&= \inf \bigl\{ \phi ^{n}( \sigma )>0:\Upsilon _{\phi ^{n}(\sigma )}(s_{n},s_{n+1},s_{n+1})< \mu \bigr\} \\ &\leq \inf \bigl\{ \phi ^{n}(\sigma )>0:\Upsilon _{\sigma }(s_{0},s_{1},s_{1})< \mu \bigr\} \\ &\leq \phi ^{n} \bigl(\inf \bigl\{ \sigma >0:\Upsilon _{\sigma }(s_{0},s_{1},s_{1})< \mu \bigr\} \bigr) \\ &=\phi ^{n} \bigl(F_{\mu ,\Upsilon }(s_{0},s_{1},s_{1}) \bigr) \end{aligned}$$

for every \(\mu \in \mathbb{J}^{0}\).

For every \(\lambda \in \mathbb{J}^{0}\), there exists \(\theta \in \mathbb{J}^{0}\) such that

$$\begin{aligned} F_{\lambda ,\Upsilon }(s_{n},s_{m},s_{m})\leq{}& F_{\theta ,\Upsilon }(s_{m-1},s_{m},s_{m})+F_{ \theta ,\Upsilon }(s_{m-2},s_{m-1},s_{m-1})+ \cdots \\ &{} +F_{\theta ,\Upsilon }(s_{n},s_{n+1},s_{n+1}) \\ \leq {}&\sum_{i=n}^{m-1}\phi ^{i}\bigl(F_{\theta ,\Upsilon }(s_{0},s_{1},s_{1}) \bigr) \rightarrow 0. \end{aligned}$$

By Lemma 4.1, \(\{s_{n}\}\) is a ϒ-Cauchy sequence. □

5 GMM-fractal spaces

Hutchinson considered the concept of fractal theory by studying the iterated function system (IFS) [12]. This subject was generalized by Barnsley [4], Bisht [5], Imdad [13], and Ri [14].

Definition 5.1

Consider the GMM-space \((S,\Upsilon )\). A mapping \(\Omega :S\rightarrow S\) is said to be a GMM-ϕ-contractive mapping if \(\Upsilon _{\phi (\sigma )}(\Omega (s),\Omega (t),\Omega (u))\leq \Upsilon _{\sigma }(s,t,u)\) for every \(s,t,u\in S\) and \(\sigma \in \mathbb{J}^{0}\).

Definition 5.2

A GMM iterated function system (shortly, GMMIFS) is a finite set of GMM-ϕ-contractions \(\{\Omega _{1},\Omega _{2},\ldots ,\Omega _{m}\}\), \((m\geq 2)\) that is defined on a complete GMM-space \((S,\Upsilon )\).

For a GMMIFS, we can find a unique nonempty compact set Γ of the complete GMM-space \((S,\Upsilon )\) in which \(\Gamma = \bigcup_{i = 1}^{m} {\Omega _{i} (\Gamma )}\) and Γ is a fractal set called the attractor of the respective (GMMIFS). In this case, the corresponding attractor GMMIFS is said to be GMM-fractal space.

Lemma 5.3

Consider the GMM-space \((S,\Upsilon )\). Assume that \(\Omega :S\rightarrow S\) is a mapping such that

$$\begin{aligned} \Upsilon _{\phi (\sigma )}\bigl(\Omega (s),\Omega (t),\Omega (u)\bigr)\leq \Upsilon _{\sigma }(s,t,u) \end{aligned}$$

for every \(s,t,u\in S\) and \(\sigma \in \mathbb{J}^{0}\). Then the sequence \(\{\Omega ^{n}(s)\}_{n=1}^{\infty }\) is GMMCS.

Proof

Assume that \(\{s_{n}:\Omega ^{n}(s)\}_{n=1}^{+\infty }\). \(\{s_{n}\}\) is a sequence satisfying the conditions of Lemma 4.4. By using the induction, we have

$$\begin{aligned} \Upsilon _{\sigma }\bigl(s,\Omega (s),\Omega (s)\bigr)\leq \Upsilon _{\sigma }\bigl(s, \Omega (s),\Omega (s)\bigr) \end{aligned}$$

if

$$\begin{aligned} \Upsilon _{\phi ^{n}(\sigma )}\bigl(\Omega ^{n}(s),\Omega ^{n+1}(s), \Omega ^{n+1}(s)\bigr)\leq \Upsilon _{\sigma }\bigl(s,\Omega (s),\Omega (s)\bigr), \end{aligned}$$

then

$$\begin{aligned} &\Upsilon _{\phi ^{n+1}(\sigma )}\bigl(\Omega ^{n+1}(s),\Omega ^{n+2}(s), \Omega ^{n+2}(s)\bigr)=\Upsilon _{\phi (\phi ^{n}(\sigma ))}(\Omega \bigl( \Omega ^{n}(s),\Omega \bigl(\Omega ^{n+1}(s)\bigr)\bigr), \\ &\Omega \bigl(\Omega ^{n+1}(s)\bigr)\leq \Upsilon _{\phi ^{n}(\sigma )} \bigl(\Omega ^{n}(s), \Omega ^{n+1}(s),\Omega ^{n+1}(s)\bigr)\leq \Upsilon _{\sigma }\bigl(s,\Omega (s), \Omega (s)\bigr). \end{aligned}$$

Therefore,

$$\begin{aligned} \Upsilon _{\phi ^{n}(\sigma )}(s_{n},s_{n+1},s_{n+1}) \leq \Upsilon _{ \sigma }(s_{0},s_{1},s_{1}), \end{aligned}$$

hence \(\{s_{n}=\Omega ^{n}(s)\}_{n=1}^{\infty }\) is a GMMCS. □

Lemma 5.4

Consider the GMM-space \((S,\Upsilon )\) and a GMM-ϕ-contractive map Ω such that

$$\begin{aligned} \Upsilon _{\phi (\sigma )}\bigl(\Omega (s),\Omega (t),\Omega (u)\bigr)\leq \Upsilon _{\sigma }(s,t,u) \end{aligned}$$
(5.1)

for every \(s,t,u\in S\) and \(\sigma \in \mathbb{J}^{0}\). Then Ω has a unique fixed point α in S.

Proof

Using Lemma 5.3 and (5.1), we get the sequence \(\{\Omega ^{n}(s)\}_{n=1}^{+\infty }\) is GMMCS for each \(s\in S\) and \(\lim_{n\rightarrow \infty }\Omega ^{n}(s)=\alpha \in S\).

Letting \(s_{0}=s\) and \(s_{n}=\Omega ^{n}(s)\) for each \(n\geq 1\), since \(\lim_{n\rightarrow \infty }\Omega ^{n}(s)=\alpha \), we have \(\lim \Upsilon _{\sigma }(s_{n},\alpha , \alpha )=0\) for each \(\sigma \in \mathbb{J}^{0}\).

On the other hand, we recognize

$$\begin{aligned} \Upsilon _{\phi (\sigma )}\bigl(\Omega (\alpha ),s_{n+1},s_{n+1} \bigr)\leq \Upsilon _{\sigma }(\alpha ,s_{n},s_{n}) \end{aligned}$$

for each \(n\in \mathbb{N}\) and each \(\sigma >0\). Then

$$\begin{aligned} \Upsilon _{\phi (\sigma )}\bigl(\Omega (\alpha ),\alpha ,\alpha \bigr)&=\lim _{n\rightarrow \infty }\Upsilon _{\phi (\sigma )}\bigl(\Omega ( \alpha ),s_{n+1},s_{n+1}\bigr) \\ &\leq \lim_{n\rightarrow \infty }\Upsilon _{\sigma }(\alpha ,s_{n},s_{n})=0 \end{aligned}$$

for each \(\sigma >0\). Therefore, \(\alpha =\Omega (\alpha )\), and α is a fixed point of Ω.

Now, we have to prove that α is the unique fixed point of Ω. If β is another fixed point of Ω, then for any \(\sigma \in \mathbb{J}^{0}\)

$$\begin{aligned} \Upsilon _{\sigma }(\alpha ,\alpha ,\beta )=\Upsilon _{\sigma } \bigl(\Omega ( \alpha ),\Omega (\alpha ),\Omega (\beta )\bigr)\geq \Upsilon _{\phi ( \sigma )}\bigl(\Omega (\alpha ),\Omega (\alpha ),\Omega (\beta )\bigr). \end{aligned}$$

On the other hand, since \(\Upsilon _{\sigma }(s,t,t)\) is nonincreasing and \(\phi (\sigma )<\sigma \), we have

$$\begin{aligned} \Upsilon _{\phi (\sigma )}\bigl(\Omega (\alpha ),\Omega (\alpha ),\Omega ( \beta )\bigr)\geq \Upsilon _{\sigma }\bigl(\Omega (\alpha ),\Omega (\alpha ), \Omega (\beta )\bigr) =\Upsilon _{\sigma }(\alpha ,\alpha ,\beta ). \end{aligned}$$

Hence \(\Upsilon _{\sigma }(\alpha ,\alpha ,\beta )=C\) for all \(\sigma \in \mathbb{J}^{0}\). From Lemma 4.2 we get \(C=0\). Therefore, \(\alpha =\beta \), i.e., α is a unique fixed point of Ω. □

6 Concluding remarks

In this paper, we studied some topological properties of Hausdorff distance on generalized modular metric and could define a generalized modular fractal space.