1 Introduction

In this paper, we define some new control functions with uncertainty named n-expansively super-homogeneous and \((n,k)\)-contractively sub-homogeneous mappings. These control functions help us to make stochastic derivations stable. Also, we can get a better approximation for these stochastic derivations.

We consider the positive cone of an order commutative \(C^{*}\)-algebra and generalize the concept of triangular norm and fuzzy sets on it; we refer the reader to [13] for more details. Also, we define \(C^{*}\)-algebra valued normed algebras using generalized triangular norms and fuzzy sets.

Definition 1

Let \(\mathcal{A}\) be an order commutative \(C^{*}\)-algebra and \(\mathcal{A}^{+}\) be the positive cone of \(\mathcal{A}\). Let \(U\neq \emptyset \). A \(C^{*}\)-algebra valued fuzzy set (in short, \(C^{*}\)-AVF set) \(\mathcal{C}\) on U is a function \(\mathcal{C}:U \longrightarrow \mathcal{A}^{+}\). For each u in U, \({\mathcal{C}}(u)\) represents the degree (in \(\mathcal{A}^{+}\)) to which u satisfies \(\mathcal{A}^{+}\).

We put \(\mathbf{0}= \inf \mathcal{A}^{+} \) and \(\mathbf{1}= \sup \mathcal{A}^{+}\). Now, we define a class of generalized t-norms (triangular norm) on \(\mathcal{A}^{+}\).

Definition 2

A t-norm on \(\mathcal{A}^{+}\) is an operation \(\odot: \mathcal{A}^{+}\times \mathcal{A}^{+} \to \mathcal{A}^{+}\) satisfying the following conditions:

(a) \(t\odot \mathbf{1}=t\) for every \(t \in {\mathcal{A}}^{+}\) (boundary condition);

(b) \(t\odot s = s\odot t \) for every \((t,s)\in ({\mathcal{A}}^{+})^{2}\) (commutativity);

(c) \(t\odot (s\odot p) = (t\odot s)\odot p\) for every \((t,s,p)\in ({\mathcal{A}}^{+})^{3}\) (associativity);

(d) \(t\preceq t^{\prime } \text{and} s\preceq s^{\prime } \Longrightarrow t \odot s \preceq t^{\prime }\odot s^{\prime } \) for every \((t,t^{\prime },s,s^{\prime })\in ({\mathcal{A}}^{+})^{4}\) (monotonicity).

Now suppose that, for \(t, s \in \mathcal{A}^{+}\) and sequences \(\{t_{n}\}\) and \(\{s_{n}\}\) converging to t and s, we have

$$ \lim_{n}(t_{n}\odot s_{n})= t\odot s. $$

Then ⊙ on \(\mathcal{A}^{+}\) is continuous (in short, CTN).

Definition 3

Assume that a decreasing mapping \(\mathcal{F}: \mathcal{A}^{+} \to \mathcal{A}^{+}\) satisfies \(\mathcal{F}(\mathbf{0}) = \mathbf{1}\) and \(\mathcal{F}(\mathbf{1}) = \mathbf{0}\). Then \(\mathcal{F}\) is called a negation on \(\mathcal{A}^{+}\).

Example 1

Let

$$ \operatorname{diag} M_{n}\bigl([0,1]\bigr)= \left\{ \begin{bmatrix} t_{1} & & \\ & \ddots & \\ & & t_{n} \end{bmatrix} =\operatorname{diag}[t_{1}, \ldots,t_{n}], t_{1},\ldots,t_{n}\in [0,1] \right \}. $$

We denote \(\operatorname{diag}[t_{1},\ldots,t_{n}]\preceq \operatorname{diag}[s_{1},\ldots,s_{n}]\) if and only if \(t_{i}\leq s_{i}\) for all \(i=1,\ldots,n\); also, \({\mathbf{1}}=\operatorname{diag}[1,\ldots,1]\) and \({\mathbf{0}}=\operatorname{diag}[0,\ldots,0]\). Now, we know that if \({\mathcal{A}}=\operatorname{diag} M_{n}([0,1])\), then \(\operatorname{diag} M_{n}([0,1])=\mathcal{A}^{+}\). Define \(\odot _{P}: \operatorname{diag} M_{n}([0,1])\times \operatorname{diag} M_{n}([0,1]) \to \operatorname{diag} M_{n}([0,1])\) such that

$$ \operatorname{diag}[t_{1},\ldots,t_{n}]\odot _{P} \operatorname{diag}[s_{1},\ldots,s_{n}] = \operatorname{diag}[t_{1}.s_{1}, \ldots,t_{n}.s_{n}]. $$

Then \(\odot _{P}\) is a t-norm (product t-norm). Also note that \(\odot _{P}\) is a CTN.

Example 2

Let \(\operatorname{diag} M_{n}([0,1])=\mathcal{A}^{+}\). Define \(\odot _{M}: \operatorname{diag} M_{n}([0,1])\times \operatorname{diag} M_{n}([0,1]) \to \operatorname{diag} M_{n}([0,1])\) such that

$$ \operatorname{diag}[t_{1},\ldots,t_{n}]\odot _{M} \operatorname{diag}[s_{1},\ldots,s_{n}]= \operatorname{diag}\bigl[ \min (t_{1},s_{1}),\ldots,\min (t_{n},s_{n})\bigr]. $$

Then \(\odot _{M}\) is a t-norm (minimum t-norm). Also note that \(\odot _{M}\) is a CTN.

Definition 4

The triple \((T,\mathcal{N},\odot )\) is called a \(C^{*}\)-AVF normed space (in short, \(C^{*}\)AVFN-space) if T is a vector space over \(\mathbb{C}\), ⊙ is a CTN on \(\mathcal{A}^{+}\), and \(\mathcal{N}\) is a \(C^{*}\)AVF-set on \(T \times [0,+\infty )\) such that, for each \(t,s\in T\) and \(\tau,\varsigma \) in \([0,+\infty )\), we have

  1. (a)

    \({\mathcal{N}}(t,0) = {\mathbf{0}}\);

  2. (b)

    \({\mathcal{N}}(t,\tau ) = {\mathbf{1}}\) for all \(\tau > 0\) if and only if \(t = 0\);

  3. (c)

    \({\mathcal{N}}(\alpha t,\tau )={\mathcal{N}}(t, \frac{\tau }{|\alpha |})\) for all \(\alpha \neq 0\);

  4. (d)

    \({\mathcal{N}}(t+s,\tau +\varsigma )\succeq {\mathcal{N}}(t,\tau ) \odot {\mathcal{N}}(s,\varsigma ) \);

  5. (e)

    \({\mathcal{N}}(t,\cdot ): [0,\infty ) \to \mathcal{A}^{+}\) is left continuous;

  6. (f)

    \(\lim_{t\rightarrow \infty }{\mathcal{N}}(t,\tau )={\mathbf{1}}\).

Also, \(\mathcal{N}\) is called a \(C^{*}\)-AVF norm.

Let \((T,\mathcal{N},\odot )\) be a \(C^{*}\)-AVFN-space. For \(\tau >0\), define the open ball \(O_{(t,\varrho )}(\tau )\) as

$$ O_{(t,\varrho )}(\tau ) = \bigl\{ s \in T: {\mathcal{N}}(t-s,\tau ) \succ \mathcal{F}(\varrho )\bigr\} , $$

in which \(t \in T\) is the center and \(\varrho \in \mathcal{A}^{+} \setminus \{{\mathbf{0}}, {\mathbf{1}}\}\) is the radius. We say that \(A \subseteq T\) is open if for each \(t \in A\), there exist \(\tau > 0\) and \(\varrho \in \mathcal{A}^{+} \setminus \{{\mathbf{0}}, {\mathbf{1}}\}\) such that \(O_{(t,\varrho )}(\tau ) \subseteq A\). We denote the family of all open subsets of T by \(\tau _{\mathcal{N}}\) and so \(\tau _{\mathcal{N}}\) is the \({C}^{*}\)-AVF topology induced by the \(C^{*}\)-AVF norm \(\mathcal{N}\).

Example 3

Consider a normed space \((T,\|\cdot \|)\). Let \(\odot =\odot _{M}\) and define the fuzzy set \(\mathcal{N}\) on \(T\times (0,\infty )\) as

$$\begin{aligned} {\mathcal{N}}(t,\tau )=\operatorname{diag}\biggl[\frac{h \tau }{h \tau +m \Vert t \Vert }, \exp \biggl(-\frac{ \Vert t \Vert }{\tau }\biggr)\biggr] \end{aligned}$$

for all \(\tau,h,m\in {\mathbb{R}}^{+}\). Then \((T,\mathcal{N},\odot _{M})\) is a \(C^{*}\)-AVFN-space.

Example 4

Let \((T,\|\cdot \|)\) be a normed space,

$$\begin{aligned} u\odot v=\bigl(u_{1}v_{1},\min \{u_{2},v_{2} \}\bigr) \end{aligned}$$

for all \(u=(u_{1},u_{2}), v=(v_{1},v_{2})\in \mathcal{A}^{+}\), and define the fuzzy set \(\mathcal{N}\) on \(T\times (0,\infty )\) as

$$\begin{aligned} {\mathcal{N}}(s,\zeta )=\operatorname{diag} \biggl[\frac{\zeta }{\zeta + \Vert s \Vert }, \frac{\zeta }{\zeta + \Vert s \Vert } \biggr],\quad \forall \zeta \in {\mathbb{R}}^{+}. \end{aligned}$$

Then \((T,\mathcal{N},\odot )\) is a \(C^{*}\)-AVFN-space.

Lemma 1

([4])

Let \((T,\mathcal{N},\odot )\) be a \(C^{*}\)-AVFN-space. Then \({\mathcal{N}}(t,\tau )\) is nondecreasing with respect to τ for all \(t\in T\).

Definition 5

Let \(\{t_{n}\}_{n \in \mathbb{N}}\) be a sequence \(C^{*}\)-AVFN-space \((T, \mathcal{N}, \odot )\). If

$$ \forall \varepsilon \in {\mathcal{A }}^{+} \setminus \{{\mathbf{0}}\} \text{ and } \tau > 0, \exists n_{0} \in {\mathbb{N}} \text{ such that } \forall m\geq n \ge n_{0}, {\mathcal{N}}(t_{m}-t_{n}, \tau ) \succeq {\mathcal{F}}(\varepsilon ), $$

then \(\{t_{n}\}_{n \in \mathbf{{N}}}\) is a Cauchy sequence. Also \(\{t_{n}\}_{n \in \mathbf{{N}}}\) is convergent to \(t \in T\) (\(t_{n} \stackrel{\mathcal{N}}{\longrightarrow } t\)) if \({\mathcal{N}}(t_{n}-t,\tau ) \to \mathbf{1}\) whenever \(n \to +\infty \) for every \(\tau > 0\). When all Cauchy sequences are convergent in a \(C^{*}\)AVFN-space, the space is complete. A complete \(C^{*}\)AVFN-space is called a \(C^{*}\)AVF Banach space (in short, \(C^{*}\)AVFB-space).

Definition 6

A \(C^{*}\)-AVFN algebra \((T,{\mathcal{N}},\odot,\odot ^{\prime })\) is a \(C^{*}\)-AVFN-space \((T,{\mathcal{N}},\odot )\) satisfying

(g) \({\mathcal{N}}(wz,\tau \zeta )\succeq {\mathcal{N}}(w,\tau )\odot ^{\prime } {\mathcal{N}}(z,\zeta )\) for every \(w,z\in T\) and \(\tau,\zeta > 0\) in which ⊙′ is a CTN.

Consider a normed algebra \((T,\|\cdot \|)\). Define a \(C^{*}\)-AVFN algebra \((T,{\mathcal{N}},\odot _{M},\odot _{M})\), in which

$$ {\mathcal{N}}(w,\zeta )=\operatorname{diag} \biggl[\frac{\zeta }{\zeta + \Vert w \Vert },\exp \biggl(-\frac{ \Vert w \Vert }{\zeta } \biggr) \biggr] $$

for all \(\zeta >0\) if and only if

$$ \Vert wz \Vert \le \Vert w \Vert \Vert z \Vert + \zeta \Vert w \Vert + \tau \Vert z \Vert \quad(w,z \in T; \tau,\zeta > 0), $$

for which we name the standard \(C^{*}\)-AVFN algebra.

Definition 7

Consider a complete \(C^{*}\)AVF-algebra \(({\mathcal{V}},{\mathcal{N}},\odot,\odot ^{\prime })\). An involution on \(\mathcal{V}\) is a mapping \(v\to v^{*}\) from \(\mathcal{V}\) into \(\mathcal{V}\) with

  1. (i)

    \(v^{**}=v\) for \(v\in \mathcal{V}\);

  2. (ii)

    \((\Upsilon v+ \Theta w)^{*}=\overline{\Upsilon } v^{*} + \overline{\Theta } w^{*}\);

  3. (iii)

    \((vw)^{*}=w^{*}v^{*}\) for \(v,w\in \mathcal{V}\).

If, in addition, \({\mathcal{N}}(v^{*}v,\Theta \Upsilon )={\mathcal{N}}(v,\Theta )\odot ^{\prime }{ \mathcal{N}}(v,\Upsilon )\) for \(v\in \mathcal{V}\) and \(\Theta,\Upsilon >0\), then \(\mathcal{V}\) is a \(C^{*}\)AVF \(C^{*}\)-algebra.

Novotný and Hrivnák [5] considered \((\Theta,\Upsilon,\Xi )\)-derivations on Lie algebras. Let \(\mathcal{B}\) be a Lie \(C^{*}\)-algebra. We say that a \(\mathbb{C}\)-linear mapping \(\mathcal{D}: \mathcal{B} \to \mathcal{B}\) is a Lie derivation on \(\mathcal{B}\) if \(\mathcal{D}: \mathcal{B} \to \mathcal{B}\) satisfies that

$$ {\mathcal{D}}[t,s]=\bigl[{\mathcal{D}}(t),s\bigr]+\bigl[t,{ \mathcal{D}}(s)\bigr] $$
(1.1)

for all \(t,s \in \mathcal{B}\) [6, 7]. Also the \(\mathbb{C}\)-linear mapping \(\mathfrak{H}: \mathcal{B} \to \mathcal{B}\) is a Lie \((\Theta,\Upsilon,\Xi )\)-derivation on \(\mathcal{B}\) if there exist \(\Theta,\Upsilon,\Xi \in \mathbb{C}\) such that

$$ \Theta {\mathfrak{H}}[t,s]=\Upsilon \bigl[{\mathfrak{H}}(t),s \bigr]+\Xi \bigl[t,{ \mathfrak{H}}(s)\bigr] $$
(1.2)

for all \(t,s \in \mathcal{B}\). A \(C^{*}\)AVF \(C^{*}\)-algebra \(\mathcal{B}\) with a Lie product \([t,s]=ts-st\) is said to be a \(C^{*}\)AVF Lie \(C^{*}\)-algebra. Assume that \(\mathcal{B}\) is a \(C^{*}\)AVF Lie \(C^{*}\)-algebra. A \(\mathbb{C}\)-linear mapping \(H: \mathcal{B} \to \mathcal{B}\) is said to be a \(C^{*}\)AVF Lie derivation on \(\mathcal{B}\) if \(H: \mathcal{B} \to \mathcal{B}\) satisfies (1.1). A \(\mathbb{C}\)-linear mapping \(\mathfrak{H}: \mathcal{B} \to \mathcal{B}\) is said to be a \(C^{*}\)AVF Lie \((\Theta,\Upsilon,\Xi )\)-derivation on \(\mathcal{B}\) if there exist \(\Theta,\Upsilon,\Xi \in \mathbb{C}\) satisfying (1.2).

Consider a probability measure space \((\Gamma, \Sigma, \xi )\) and Borel measurable spaces \((T,{\mathfrak{B}}_{T})\) and \((S,{\mathfrak{B}}_{S})\), where T and S are \(C^{*}\)AVFB-spaces. If for \(\digamma:\Gamma \times T\to S\) we have \(\{\gamma: \digamma (\gamma,t)\in R\}\in \Sigma \) for every t in T and \(R\in {\mathfrak{B}}_{S}\), we say that Ϝ is a random operator. If \(\digamma (\gamma,\alpha t_{1}+\beta t_{2})=\alpha \digamma (\gamma,t_{1})+ \beta \digamma (\gamma, t_{2})\) almost everywhere for \(t_{1},t_{2}\) in T and scalers \(\alpha,\beta \), then Ϝ is a linear random operator, also if we can find an \(M(\gamma )>0\) such that

$$ \nu \bigl(\digamma (\gamma,t_{1})-\digamma (\gamma,t_{2}),M( \gamma ) \tau \bigr)\ge \nu (t_{1}-t_{2},\tau ) $$

almost everywhere for \(t_{1},t_{2}\) in T and \(\tau >0\), then Ϝ is a bounded random operator.

2 Cauchy–Jensen random operator

In this paper, let \(\mathcal{G}=[0,\infty ]\) and \(\mathcal{G}^{\circ }=(0,\infty )\).

Theorem 1

([8, 9])

Let S be a set with the complete \(\mathcal{G}\)-valued metric δ, and let a self-mapping Λ on S satisfy

$$ \delta (\Lambda s,\Lambda t)\le \kappa \delta (t,s),\quad\kappa < 1 \textit{ is a Lipschitz constant.} $$

Let \(s\in S\). Then we have two options

  1. (I)

    \(\delta (\Lambda ^{m}s,\Lambda ^{m+1}s) = \infty, \forall m\in \mathbb{N}\) or

  2. (II)

    we can find \(m_{0}\in \mathbb{N}\) such that

    1. (1)

      \(\delta (\Lambda ^{m}s,\Lambda ^{m+1}s)<\infty, \forall m\ge m_{0}\);

    2. (2)

      the fixed point \(t^{*}\) of Λ is the convergent point of the sequence \(\{\Lambda ^{m} s\}\);

    3. (3)

      in the set \(V = \{t\in S \mid \delta (\Lambda ^{m_{0}}s,t) <\infty \}\), \(t^{*}\) is the unique fixed point of Λ;

    4. (4)

      \((1-\kappa )\delta (t,t^{\ast }) \le \delta (t,\Lambda t)\) for every \(s \in V\).

In this paper, assume that \(({\mathcal{B}},{\mathcal{N}},\odot _{M},\odot _{M})\) is a \(C^{*}\)-AVF Lie \(C^{*}\)-algebra. Also, we use the random operator \(g:\Gamma \times {\mathcal{B}}\rightarrow \mathcal{B}\):

$$\begin{aligned} &\Delta _{\nu }g (\gamma,t_{1},\ldots,t_{n} ):=\sum ^{n}_{i=1}g \Biggl(\gamma,\nu t_{i}+ \frac{1}{n-1}\sum^{n}_{j=1,j\neq i} \nu t_{j} \Biggr)-2\nu \sum^{n}_{i=1}g( \gamma,t_{i}), \\ &\Delta _{\Theta,\Upsilon,\Xi } g (\gamma,t,s ):=\Theta g[ \gamma,t,s]-\Upsilon \bigl[g( \gamma,t),s\bigr]-\Xi \bigl[t,g(\gamma,s)\bigr] \end{aligned}$$

for all \(t_{1},\ldots,t_{n}\in \mathcal{B},\gamma \in \Gamma \), all \(\nu \in \Omega \) for some set \(\Omega \in D_{\mathbb{C}}\) and \(\Theta,\Upsilon,\Xi \in \mathbb{C}\). Denote

$$ D_{\mathbb{C}}=\{\Omega \subseteq {\mathbb{C}}| g: \Omega \longrightarrow \mathcal{B} \text{ is additive, bounded and continuous}\}. $$

For more details, see [1013]. Also, \({\mathbb{T}}_{1/n_{0}}^{1}:=\{e^{i\theta }; 0\leq \theta \leq 2 \pi /n_{0} \}\in D_{\mathbb{C}}\).

Lemma 2

([14])

A random operator \(g:\Gamma \times T \rightarrow S\) satisfies the equation

$$\begin{aligned} &g \biggl(\gamma,t_{1}+ \frac{1}{2}(t_{2}+t_{3}) \biggr)+g \biggl( \gamma,t_{2}+ \frac{1}{2}(t_{1}+t_{3}) \biggr)+g \biggl(\gamma,t_{3}+ \frac{1}{2}(t_{1}+t_{2}) \biggr) \\ &\quad=2 \bigl(g(\gamma,t_{1})+g(\gamma,t_{2})+g( \gamma,t_{3}) \bigr) \end{aligned}$$
(2.1)

for all \(t_{1},t_{2},t_{3}\in T,\gamma \in \Gamma \) if and only if g is additive.

If we set \(t_{3}=0\) in (2.1), then we get that the Cauchy–Jensen random operator

$$ g \biggl( \gamma,\frac{1}{2}(t_{1}+t_{2}) \biggr)+g \biggl(\gamma,t_{1}+ \frac{t_{2}}{2} \biggr)+g \biggl(\gamma, \frac{t_{1}}{2}+t_{2} \biggr)=2 \bigl(g(\gamma,t_{1})+g( \gamma,t_{2}) \bigr) $$

is equivalent to \(g(\gamma,t_{1}+t_{2})=g(\gamma,t_{1})+g(\gamma,t_{2})\) for all \(t_{1},t_{2}\in T,\gamma \in \Gamma \).

Lemma 3

([15])

A random operator \(g:\Gamma \times T \rightarrow S\) satisfies \(\Delta _{\nu }g=0\) for all \(t_{1},\ldots,t_{n}\in T,\gamma \in \Gamma \) if and only if g is additive.

Lemma 4

([10])

Let \(g:\Gamma \times {\mathcal{B}} \rightarrow \mathcal{B}\) be an additive random operator such that \(g(\gamma,\nu t)=\nu g(\gamma,t)\) for all \(\nu \in \Omega,\gamma \in \Gamma \) where the bounded set Ω is in \(D_{\mathbb{C}}\). Then the random operator g is \(\mathbb{C}\)-linear.

3 Hyers–Ulam–Rassias stability

In this section, we present some stability results. In real phenomena, the concept of stability also appears in mechanical applications as a consequence of real equilibrium problems. Related stability problems take part in mathematical models from mechanics when equilibrium equations are imposed (see [16, 17]). The stability results have numerous applications in the study of stability of porous medium problems (see [18]). For further applications, we refer to [1921].

Definition 8

Let \(n\in \mathbb{N}\). A \(C^{*}\)AVF mapping \({\mathcal{R}}: {\mathcal{B}}^{n}\times (0,\infty ) \rightarrow { \mathcal{A }}^{+}\) is called a \(C^{*}\)AVF n-expansively super-homogeneous function if there is a fixed number \(\ell \in (0,1)\) such that

$$\begin{aligned} &{\mathcal{R}} \bigl( \bigl(\mu ^{-1}t_{1}, \ldots,\mu ^{-1}t_{n} \bigr),\tau \bigr)\succeq {\mathcal{R}} \biggl( (t_{1},\ldots,t_{n} ), \frac{\mu ^{n}\tau }{\ell ^{n}} \biggr), \end{aligned}$$
(3.1)
$$\begin{aligned} &\lim_{\varsigma \to \infty }{\mathcal{R}}\bigl((t_{1}, \ldots,t_{n}), \varsigma \bigr)={\mathbf{1}} \end{aligned}$$
(3.2)

for all \(t_{i}\in {\mathcal{B}} (1\leq i\leq n)\), \(1<\mu \in \mathbb{N}\), and \(\tau \in \mathcal{G}^{\circ }\).

Example 5

Consider a real function \(r:\mathbb{R}\to \mathbb{R}\) defined as \(r(t)=|t|^{4}\). Define

$$ {\mathcal{R}}\bigl((t_{1},t_{2},t_{3}),\tau \bigr)=\operatorname{diag} \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{3} r(t_{j})},\exp \biggl(- \frac{\sum_{j=1}^{3} r(t_{j})}{\tau } \biggr) \biggr] $$

for all \(t_{1},t_{2},t_{3}\in \mathbb{R}\) and \(\tau \in \mathcal{G}^{\circ }\). Put \(\ell =\frac{1}{\sqrt[3]{2}}\). Then \({\mathcal{R}}\) is a 3-expansively super-homogeneous function.

Theorem 2

Consider a \(C^{*}\)-AVF expansively super-homogeneous function \(\varphi: {\mathcal{B}}^{n}\times (0,\infty )\rightarrow { \mathcal{A }}^{+}\) and a \(C^{*}\)VAF 2-expansively super-homogeneous function \(\psi:{\mathcal{B}}^{2}\times (0,\infty ) \rightarrow {\mathcal{A }}^{+}\) with a fixed number such that a random operator \(g:\Gamma \times \mathcal{B}\rightarrow \mathcal{B}\) satisfies

$$\begin{aligned} &{\mathcal{N}}\bigl(\Delta _{\eta }g (\gamma,t_{1}, \ldots,t_{n} ),t\bigr) \succeq \varphi \bigl((t_{1}, \ldots,t_{n}),\tau \bigr), \end{aligned}$$
(3.3)
$$\begin{aligned} & {\mathcal{N}}\bigl(\Delta _{\Theta,\Upsilon,\Xi } g (\gamma,t,s ),\tau \bigr)\succeq \psi \bigl((t,s),\tau \bigr) \end{aligned}$$
(3.4)

for all \(t_{1},\ldots,t_{n},t,s\in \mathcal{B},\gamma \in \Gamma \), \(\eta \in \Omega \), \(\tau \in \mathcal{G}^{\circ }\) and some \(\Theta,\Upsilon,\Xi \in \mathbb{C}\), where \(\Omega \in D_{\mathbb{C}}\) is bounded. Then we can find a unique \(C^{*}\)VAF Lie \((\Theta,\Upsilon,\Xi )\)-derivation \({\mathfrak{H}}: \Gamma \times {\mathcal{B}}\rightarrow \mathcal{B}\) which satisfies \(\Delta _{\nu }g=0\) and the inequality

$$ {\mathcal{N}}\bigl(g(\gamma,z)-{\mathfrak{H}}(\gamma,z),\varsigma \bigr) \succeq \varphi \biggl(\bigl(\overbrace{z,\ldots,z}^{n{\textit{-times}}}\bigr), \frac{(2^{n} n-2n\ell ^{n})\varsigma }{\ell ^{n}} \biggr) $$
(3.5)

for all \(z\in \mathcal{B},\gamma \in \Gamma \) and \(\varsigma \in \mathcal{G}^{\circ }\).

Proof

Consider \(M:=\{k: \Gamma \times \mathcal{B}\rightarrow \mathcal{B}, k( \varpi,0)=0, \forall \varpi \in \Gamma \}\) and define

$$\begin{aligned} \delta (k,h): ={}&\inf \biggl\{ P\in \Xi ^{\circ }: {\mathcal{N}}\bigl(k( \varpi,w) - h(\varpi,w),\tau \bigr) \succeq \varphi \biggl( (w,\ldots,w), \frac{\tau }{P} \biggr), \\ &{} \forall \varpi \in \Gamma, w\in \mathcal{B}, \tau \in \mathcal{G}^{\circ } \biggr\} . \end{aligned}$$

In [22], Miheţ and Radu showed that \((M, \delta )\) is a complete \(\mathcal{G}\)-valued metric space (see [23]).

Define a linear mapping \(\Lambda: M\rightarrow M\) as

$$ (\Lambda k) (\varpi,w) = 2k \biggl(\varpi,\frac{w}{2} \biggr), \quad\forall k \in M \text{ and } w\in {\mathcal{B}} \varpi \in \Gamma. $$

Let \(k,h\in M\) and consider a sequence of positive real numbers \(P_{m}\) with \(\lim_{m\to \infty }P_{m}=\delta (k,h)\) and \(\delta (k,h) \leq P_{m}\). Fix m and, for convenience, let \(P_{m}=P\). Then

$$ {\mathcal{N}}\bigl(k(\varpi,w) -h(\varpi,w),\varsigma \bigr) \succeq \varphi \biggl((w,\ldots,w),\frac{\varsigma }{P} \biggr) $$

for all \(w\in \mathcal{B},\varpi \in \Gamma \) and \(\varsigma \in \Xi ^{\circ }\). Now we have

$$\begin{aligned} {\mathcal{N}}\bigl((\Lambda k) (\varpi,w) - (\Lambda h) (\varpi,w), \varsigma \bigr)& = {\mathcal{N}} \biggl(2 k \biggl(\varpi,\frac{w}{2} \biggr) - 2h \biggl(\varpi,\frac{w}{2} \biggr),\varsigma \biggr) \\ & = {\mathcal{N}} \biggl( k \biggl(\varpi,\frac{w}{2} \biggr) - h \biggl(\varpi,\frac{w}{2} \biggr),\frac{\varsigma }{2} \biggr) \\ &\succeq \varphi \biggl(\biggl(\frac{w}{2},\ldots,\frac{w}{2} \biggr), \frac{\varsigma }{2P} \biggr) \\ &\succeq \varphi \biggl((w,\ldots,w), \frac{2^{n-1}\varsigma }{\ell ^{n} P} \biggr) \end{aligned}$$

for all \(w\in \mathcal{B}\) and \(\varsigma \in \mathcal{G}^{\circ },\varpi \in \Gamma \), and so \(\delta (\Lambda k,\Lambda h) \leq \frac{\ell ^{n}}{2^{n-1}}P = \frac{\ell ^{n}}{2^{n-1}}P_{m}\) for any \(k,h \in M\). Now let \(m \to \infty \), and we get \(\delta (\Lambda k,\Lambda h) \leq \frac{\ell ^{n}}{2^{n-1}} \delta (k,h)\) for any \(k,h \in M\).

Let g be as in the statement of the theorem. Putting \(t_{1},\ldots,t_{n} = w \) and \(\eta = 1\) in (3.3), we obtain

$$ {\mathcal{N}}\bigl(g(\gamma,2w) - 2 g(\gamma,w),\tau \bigr)\succeq \phi \bigl((w,\ldots,w),n \tau \bigr) $$

for all \(w\in \mathcal{B}\), \(\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Thus

$$\begin{aligned} {\mathcal{N}} \biggl(2g \biggl(\gamma,\frac{w}{2} \biggr)-g(\gamma,w), \tau \biggr)&\succeq \varphi \biggl( \biggl(\frac{w}{2},\ldots, \frac{w}{2} \biggr),n\tau \biggr) \\ &\succeq \varphi \biggl((w,\ldots,w),\frac{2^{n} n\tau }{\ell ^{n}} \biggr) \end{aligned}$$

for all \(w\in \mathcal{B},\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Hence \(\delta (\Lambda g,g)\leq \frac{\ell ^{n}}{2^{n} n}\). Now Theorem 1 guarantees that \(\{\Lambda ^{n} g\}\) converges to a unique fixed point \({\mathfrak{H}}\in M\) of Λ such that \({\mathfrak{H}}(\gamma,2w)=2{\mathfrak{H}}(\gamma,w)\), i.e.,

$$\begin{aligned} {\mathfrak{H}}(\gamma,w) =\lim_{m\to \infty }2^{m} g \biggl(\gamma, \frac{w}{2^{m}} \biggr) \end{aligned}$$
(3.6)

for all \(w \in \mathcal{B},\gamma \in \Gamma \). Also (see Theorem 1)

$$ \delta (g,{\mathfrak{H}})\le \frac{1}{1-\frac{\ell ^{n}}{2^{n-1}}} \delta (g, \Lambda g) \le \frac{\ell ^{n}}{2^{n} n-2n\ell ^{n}}, $$

i.e., (3.5) holds for all \(t \in \mathcal{B}\) and \(\tau \in \mathcal{G}^{\circ }\). From the property of \(\mathfrak{H}\), we get that

$$\begin{aligned} {\mathcal{N}} \bigl(\Delta _{\eta }{\mathfrak{H}} (\gamma,t_{1}, \ldots,t_{n} ),\tau \bigr) &=\lim_{m\to \infty } { \mathcal{N}} \biggl(\Delta _{\eta }g \biggl(\gamma,\frac{t_{1}}{2^{m}}, \ldots, \frac{t_{n}}{2^{m}} \biggr), \frac{\tau }{2^{m}} \biggr) \\ &\succeq \lim_{m\to \infty } \varphi \biggl( \biggl( \frac{t_{1}}{2^{m}}, \ldots,\frac{t_{n}}{2^{m}} \biggr),\frac{\tau }{2^{m}} \biggr)={1} \end{aligned}$$

holds for all \(t_{1},\ldots,t_{n}\in \mathcal{B},\gamma \in \Gamma \), \(\eta \in \Omega \), and \(\tau \in \mathcal{G}^{\circ }\). Thus \(\Delta _{\eta }{\mathfrak{H}} (\gamma,t_{1},\ldots,t_{n} )=0\) for all \(t_{1},\ldots,t_{n}\in \mathcal{B},\gamma \in \Gamma \) and all \(\eta \in \Omega \). If we put \(\eta =1\) in the above equality, then Lemma 3 implies that \(\mathfrak{H}\) is additive. Putting \(t_{1}=t\) and \(t_{2}=\cdots =t_{n}=0\) in the above equality, we get \({\mathfrak{H}}(\gamma,\eta t)= \eta {\mathfrak{H}}(\gamma,t)\) and Lemma 4 implies that \({\mathfrak{H}}\in M\) is \(\mathbb{C}\)-linear. Also (3.1) and (3.4) imply that

$$\begin{aligned} {\mathcal{N}}\bigl(\Delta _{\Theta,\Upsilon,\Xi } {\mathfrak{H}} (\gamma,t,s ),\tau \bigr)&=\lim_{m\to \infty } {\mathcal{N}} \biggl(\Delta _{\Theta, \Upsilon,\Xi } g \biggl(\gamma,\frac{t}{2^{m}},\frac{s}{2^{m}} \biggr), \frac{\tau }{2^{m}} \biggr) \\ &\succeq \lim_{m\to \infty } \psi \biggl( \biggl(\frac{t}{2^{m}}, \frac{s}{2^{m}} \biggr),\frac{\tau }{2^{m}} \biggr) \\ &\succeq \lim_{m\to \infty }\psi \biggl((t,s), \frac{2^{2m}\tau }{\ell ^{2} 2^{m}} \biggr) \\ &=\lim_{m\to \infty }\psi \biggl((t,s),\frac{2^{m}\tau }{\ell ^{2} } \biggr) \\ &=1 \end{aligned}$$

for all \(t,s\in \mathcal{B}\), some \(\Theta,\Upsilon,\Xi \in \mathbb{C}\) and \(\tau \in \mathcal{G}^{\circ }\). Then, for some \(\Theta,\Upsilon,\Xi \in \mathbb{C}\),

$$ \Theta {\mathfrak{H}}[\gamma,t,s]=\Upsilon \bigl[{\mathfrak{H}}(\gamma,t),s \bigr]+ \Xi \bigl[t,{\mathfrak{H}}(\gamma,s)\bigr] $$

for all \(t,s\in \mathcal{B},\gamma \in \Gamma \). So the random operator \({\mathfrak{H}}\in M\) is a \(C^{*}\)VAF Lie \((\Theta,\Upsilon,\Xi )\)-derivation on the \(C^{*}\)VAF Lie \(C^{*}\)-algebra \(\mathcal{B}\) and (3.5) holds. □

Example 6

Let a random operator \(g:\Gamma \times \mathcal{B}\rightarrow \mathcal{B}\) satisfy

$$\begin{aligned} &{\mathcal{N}}\bigl(\Delta _{\eta }g (\gamma,t_{1}, \ldots,t_{4} ),t\bigr) \succeq \operatorname{diag} \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{4} \Vert t_{j} \Vert ^{5}}, \exp \biggl(-\frac{\sum_{j=1}^{4} \Vert t_{j} \Vert ^{5}}{\tau } \biggr) \biggr], \end{aligned}$$
(3.7)
$$\begin{aligned} &{\mathcal{N}}\bigl(\Delta _{\Theta,\Upsilon,\Xi } g ( \gamma,t_{1},t_{2} ),\tau \bigr)\succeq \operatorname{diag} \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{2} \Vert t_{j} \Vert ^{5}},\exp \biggl(- \frac{\sum_{j=1}^{2} \Vert t_{j} \Vert ^{5}}{\tau } \biggr) \biggr] \end{aligned}$$
(3.8)

for all \(t_{1},\ldots,t_{4}\in \mathcal{B},\gamma \in \Gamma \), \(\eta \in \Omega \), \(\tau \in \mathcal{G}^{\circ }\) and some \(\Theta,\Upsilon,\Xi \in \mathbb{C}\), where \(\Omega \in D_{\mathbb{C}}\) is bounded. Then we can find a unique \(C^{*}\)VAF Lie \((\Theta,\Upsilon,\Xi )\)-derivation \({\mathfrak{H}}: \Gamma \times {\mathcal{B}}\rightarrow \mathcal{B}\) which satisfies \(\Delta _{\nu }g=0\) and the inequality

$$ {\mathcal{N}}\bigl(g(\gamma,z)-{\mathfrak{H}}(\gamma,z),\tau \bigr)\succeq \operatorname{diag} \biggl[\frac{30\tau }{30\tau + \Vert z \Vert ^{5}},\exp \biggl(- \frac{ \Vert z \Vert ^{5}}{30\tau } \biggr) \biggr] $$
(3.9)

for all \(z\in \mathcal{B},\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\).

Define

$$ \varphi \bigl((t_{1},t_{2},t_{3},t_{4}), \tau \bigr)=\operatorname{diag} \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{4} \Vert t_{j} \Vert ^{5}},\exp \biggl(- \frac{\sum_{j=1}^{4} \Vert t_{j} \Vert ^{5}}{\tau } \biggr) \biggr] $$

and

$$ \psi \bigl((t_{1},t_{2}),\tau \bigr)=\operatorname{diag} \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{2} \Vert t_{j} \Vert ^{5}},\exp \biggl(- \frac{\sum_{j=1}^{2} \Vert t_{j} \Vert ^{5}}{\tau } \biggr) \biggr] $$

for all \(t_{1},t_{2},t_{3}\in \mathbb{B}\) and \(\tau \in \mathcal{G}^{\circ }\). Put \(\ell =\frac{1}{\sqrt[4]{2}}\). Then φ and ψ are 4-expansively super-homogeneous function and 2-expansively super-homogeneous function, respectively. Now, applying Theorem 2, we get (3.9).

Definition 9

Let \(n,k\in \mathbb{N}\). A \(C^{*}\)AVF map \({\mathcal{O}}: {\mathcal{B}}^{n}\times (0,\infty ) \rightarrow { \mathcal{A }}^{+}\) is called a \(C^{*}\)AVF \((n,k)\)-contractively sub-homogeneous if there exists a fixed number with \(0 < \ell < 1\) such that

$$\begin{aligned} &{\mathcal{O}}(\mu t_{1},\ldots,\mu t_{n},\tau )\succeq { \mathcal{O}} \biggl((t_{1},\ldots,t_{n}), \frac{\tau }{\ell ^{k}\mu ^{\frac{1}{k}}} \biggr), \\ &\lim_{\varsigma \to \infty }{\mathcal{O}}(t_{1},\ldots,t_{n}, \varsigma )={ \mathbf{1}} \end{aligned}$$

for all \(t_{1},\ldots,t_{n}\in {\mathcal{B}}\), \(1<\mu \in \mathbb{N}\) and \(\tau \in \mathcal{G}^{\circ }\).

Example 7

Consider a real function \(r:\mathbb{R}\to \mathbb{R}\) defined as \(r(t)=|t|^{\frac{1}{4}}\). Define

$$ {\mathcal{O}}\bigl((t_{1},t_{2},t_{3}),\tau \bigr)=\operatorname{diag} \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{3} r(t_{j})},\exp \biggl(- \frac{\sum_{j=1}^{3} r(t_{j})}{\tau } \biggr) \biggr] $$

for all \(t_{1},t_{2},t_{3}\in \mathbb{R}\) and \(\tau \in \mathcal{G}^{\circ }\). Put \(\ell =\frac{1}{\sqrt[8]{2}}\). Then \({\mathcal{O}}\) is a \((3,2)\)-contractively sub-homogeneous function.

Theorem 3

Consider a \(C^{*}\)AVF (n+2,k)-contractively sub-homogeneous function \(\varphi:{\mathcal{B}}^{n+2}\times (0,\infty ) \rightarrow { \mathcal{A }}^{+}\) with a fixed number such that a random operator \(g: \Gamma \times {\mathcal{B}}\rightarrow \mathcal{B}\) holds

$$ {{\mathcal{N}}} \bigl(\Delta _{\eta }g ( \gamma,t_{1},\ldots,t_{n} )+\Delta _{\Theta,\Upsilon,\Xi } g ( \gamma,t,s ), \tau \bigr)\succeq \varphi \bigl( (t_{1}, \ldots,t_{n},t,s ),\tau \bigr) $$
(3.10)

for all \(t_{1},\ldots,t_{n},t,s\in \mathcal{B},\gamma \in \Gamma \), all \(\eta \in \Omega \) in which \(\Omega \in D_{\mathbb{C}}\) is a bounded set, \(\Theta,\Upsilon,\Xi \in \mathbb{C}\) and \(\tau \in \mathcal{G}^{\circ }\). Then there is a unique \(C^{*}\)VAF Lie \((\Theta,\Upsilon,\Xi )\)-derivation \({\mathfrak{H}}:\Gamma \times { \mathcal{B}}\rightarrow \mathcal{B}\) which satisfies \(\Delta _{\nu }g=0\) and the inequality

$$ {\mathcal{N}}\bigl(g(\gamma,w)-{\mathfrak{H}}(\gamma,w),\tau \bigr)\succeq \varphi \biggl(\bigl(\overbrace{w,\ldots,w}^{{n}{\textit{-times}}}, 0,0 \bigr), \frac{2n(\sqrt[k]{2^{k-1}}-\ell ^{k})}{\sqrt[k]{2^{k-1}}}\tau \biggr) $$
(3.11)

for all \(w\in \mathcal{B},\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\).

Proof

Putting \(t_{1},\ldots, t_{n} =t\) and \(\eta =1\) in (3.10), we get

$$ {\mathcal{N}}\bigl(ng(\gamma,2t)-2ng(\gamma,t),\tau \bigr)\succeq \varphi \bigl( (t,\ldots,t,0,0 )\tau \bigr) $$
(3.12)

for all \(t\in \mathcal{B},\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Let \(M:=\{f:\Gamma \times \mathcal{B}\rightarrow \mathcal{B}, f(\varpi,0)=0 \forall \varpi \in \Gamma \}\). We introduce a function on M as

$$\begin{aligned} \delta (f,h): ={}& \inf \biggl\{ u>0: {\mathcal{N}}\bigl(f(\gamma,t) - h( \gamma,t), \tau \bigr) )\succeq \varphi \biggl( (t,\ldots,t,0,0), \frac{\tau }{u} \biggr), \\ & \forall t\in {\mathcal{B}}, \gamma \in \Gamma \text{ and } \tau \in \mathcal{G}^{\circ }\biggr\} . \end{aligned}$$

In [22], Miheţ and Radu showed that \((B, \delta )\) is a complete Ξ-valued metric space (see [23]).

Define \(\Lambda:M\rightarrow M\) as

$$ (\Lambda f) (\gamma,t)= \frac{1}{2}f(\gamma,2t) \quad\text{for all } f \in E \text{ and } t \in \mathcal{B}. $$

Now, we have

$$\begin{aligned} {\mathcal{N}}\bigl((\Lambda f) (\varpi,w) - (\Lambda h) (\varpi,w), \varsigma \bigr)& = {\mathcal{N}} \biggl(\frac{1}{2}f(\gamma,2t) - \frac{1}{2}h(\gamma,2t),\varsigma \biggr) \\ & = {\mathcal{N}} \bigl( f(\gamma,2t) - h(\gamma,2t),2\varsigma \bigr) \\ &\succeq \varphi \biggl((2w,\ldots,2w,0,0),\frac{2\varsigma }{u} \biggr) \\ &\succeq \varphi \biggl((w,\ldots,w,0,0), \frac{2^{1-\frac{1}{k}}\varsigma }{\ell ^{k} u} \biggr) \end{aligned}$$

for all \(w\in \mathcal{B}\) and \(\varsigma \in \mathcal{G}^{\circ },\varpi \in \Gamma \), and so \(\delta (\Lambda f, \Lambda h) \le \frac{\ell ^{k}}{2^{1-\frac{1}{k}}}\delta (f, h)\) for any \(f, h \in E\). Let g be as in the statement of the theorem. Using (3.12) we get

$$ {\mathcal{N}} \biggl(\frac{1}{2}g(\gamma,2t)-g(\gamma,t),\tau \biggr) \succeq \varphi \bigl( (t,\ldots,t,0,0 ),2n\tau \bigr) $$

for all \(t \in \mathcal{B},\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Then \(\delta (\Lambda g,g) \le \frac{1}{2n}\). Applying Theorem 1, we get that \(\{\Lambda ^{m} g\}\) converges to a unique fixed point \({\mathfrak{H}}\in M\) of Λ such that \({\mathfrak{H}}(\gamma,2t)=2{\mathfrak{H}}(\gamma,t)\), i.e.,

$$\begin{aligned} {\mathfrak{H}}(\gamma,t)= \lim_{m\to \infty } \frac{1}{2^{m}} g \bigl( \gamma,2^{m}t \bigr) \end{aligned}$$
(3.13)

for all \(t \in \mathcal{B}\). Also

$$ \delta (g,{\mathfrak{H}})\le \frac{1}{1-\frac{\ell ^{k}}{{2^{1-\frac{1}{k}}}}} \delta (g, \Lambda g) \le \frac{1}{2n(1-\frac{\ell ^{k}}{{2^{1-\frac{1}{k}}}})}= \frac{\sqrt[k]{2^{k-1}}}{2n(\sqrt[k]{2^{k-1}}-\ell ^{k})}, $$

i.e., (3.5) is true for every \(t \in \mathcal{B}\). Then (3.11) is true. Using Theorem 2, we can complete the proof. □

Example 8

Let a random operator \(g: \Gamma \times {\mathcal{B}}\rightarrow \mathcal{B}\) satisfy

$$\begin{aligned} &{{\mathcal{N}}} \bigl(\Delta _{\eta }g ( \gamma,t_{1}, t_{2} )+\Delta _{\Theta,\Upsilon,\Xi } g ( \gamma,t_{3},t_{4} ),\tau \bigr) \\ &\quad \succeq \operatorname{diag} \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{4} \Vert t_{j} \Vert ^{\frac{1}{6}}},\exp \biggl(- \frac{\sum_{j=1}^{4} \Vert t_{j} \Vert ^{\frac{1}{6}}}{\tau } \biggr) \biggr] \end{aligned}$$
(3.14)

for all \(t_{1},\ldots,t_{4}\in \mathcal{B},\gamma \in \Gamma \), all \(\eta \in \Omega \) in which \(\Omega \in D_{\mathbb{C}}\) is a bounded set, \(\Theta,\Upsilon,\Xi \in \mathbb{C}\) and \(\tau \in \mathcal{G}^{\circ }\). Then there is a unique \(C^{*}\)VAF Lie \((\Theta,\Upsilon,\Xi )\)-derivation \({\mathfrak{H}}:\Gamma \times { \mathcal{B}}\rightarrow \mathcal{B}\) which satisfies \(\Delta _{\nu }g=0\) and the inequality

$$\begin{aligned} &{\mathcal{N}}\bigl(g(\gamma,w)-{\mathfrak{H}}(\gamma,w),\tau \bigr) \\ &\quad\succeq \operatorname{diag} \biggl[ \frac{8(\sqrt[6]{32}-1)\tau }{8(\sqrt[6]{32}-1)\tau + 2\sqrt[6]{32} \Vert w \Vert ^{\frac{1}{6}}}, \exp \biggl(- \frac{\sqrt[6]{32} \Vert w \Vert ^{\frac{1}{6}}}{4(\sqrt[6]{32}-1)\tau } \biggr) \biggr] \end{aligned}$$
(3.15)

for all \(w\in \mathcal{B},\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\).

Define

$$ \varphi \bigl((t_{1},t_{2},t_{3},t_{4}), \tau \bigr)= \biggl[ \frac{\tau }{\tau +\sum_{j=1}^{4} \Vert t_{j} \Vert ^{\frac{1}{6}}},\exp \biggl(-\frac{\sum_{j=1}^{4} \Vert t_{j} \Vert ^{\frac{1}{6}}}{\tau } \biggr) \biggr] $$

for all \(t_{1},t_{2},t_{3},t_{4}\in \mathbb{R}\) and \(\tau \in \mathcal{G}^{\circ }\). Put \(\ell =\frac{1}{\sqrt[18]{2}}\). Then φ is a \((4,3)\)-contractively sub-homogeneous function. Now, applying Theorem 3, we get (3.15).

4 \(C^{*}\)-ternary algebra stochastic homomorphism

A \(\mathbb{C}\)-linear random operator \(\eta: \Gamma \times T \rightarrow S\) is said to be a \(C^{*}\)-ternary algebra stochastic homomorphism (\(C^{*}\)-tash) if

$$ \eta \bigl(\gamma,[t,s,p]\bigr) = \bigl[\eta (\gamma,t), \eta (\gamma,s), \eta ( \gamma,p)\bigr] $$

for all \(t,s,p \in T\) and \(\gamma \in \Gamma \) (see [6, 24]).

Consider a random operator \(g: \Gamma \times T \to S\) and define

$$ \Xi _{\xi }g(\gamma,t_{1},\dots,t_{p},s_{1}, \dots,s_{d}):= 2g \Biggl( \gamma,\frac{\sum_{j=1}^{p}\xi t_{j}}{2}+\sum _{j=1}^{d}\xi s_{j} \Biggr)-\sum _{j=1}^{p}\xi g(\gamma,t_{j})-2\sum _{j=1}^{d}\xi g( \gamma,s_{j}) $$

for all \(\xi \in {\mathbb{T}}^{1}:=\{ \lambda \in \mathbb{C}: | \lambda |=1 \}\) and all \(t_{1},\dots,t_{p},s_{1},\dots,s_{d}\in T\) and \(\gamma \in \Gamma \).

It is easy to show that a random operator \(g: \Gamma \times T \to S\) satisfies

$$ \Xi _{\xi }g(\gamma,t_{1}, \ldots, t_{p}, s_{1}, \ldots, s_{d}) =0 $$

for all \(\xi \in {\mathbb{T}}^{1}\), \(t_{1},\ldots,t_{p},s_{1},\ldots,s_{d}\in T\) and \(\gamma \in \Gamma \) if and only if

$$ g(\gamma,\xi t+\lambda s)=\xi g(\gamma,t)+\lambda g(\gamma,s) $$

for all \(\xi, \lambda \in {\mathbb{T}}^{1}\), \(t,s \in T\) and \(\gamma \in \Gamma \).

Theorem 4

Consider q and σ such that \(q<1\) and \(\sigma < 3\). Let \(\varphi:T ^{p+d}\times (0,\infty )\rightarrow {\mathcal{A}}^{+} \) (\(d \geq 2\)) and \(\psi:T^{3}\times (0,\infty ) \rightarrow {\mathcal{A }}^{+}\) be a \(C^{*}\)-AVF control function satisfying

$$\begin{aligned} &\varphi \bigl(a(t_{1},\dots,t_{p},s_{1}, \dots,s_{d}),\tau \bigr)=\varphi \biggl( (t_{1}, \dots,t_{p},s_{1},\dots,s_{d}),\frac{\tau }{a^{q}} \biggr), \end{aligned}$$
(4.1)
$$\begin{aligned} &\psi \bigl( a(t,s,p),\tau \bigr)=\psi \biggl((t,s,p), \frac{\tau }{a^{\sigma }} \biggr) \end{aligned}$$
(4.2)

and

$$\begin{aligned} \lim_{\mu \to \infty } \varphi \bigl( (t_{1}, \dots,t_{p},s_{1},\dots,s_{d}), \mu \bigr)= \lim _{\mu \to \infty } \psi \bigl((t,s,p),\mu \bigr)=1 \end{aligned}$$
(4.3)

for all \(t_{1},\dots,t_{p},s_{1},\dots,s_{d},t,s,p\in T\), \(a>0\), and \(\tau, \nu \in \mathcal{G}^{\circ }\). Suppose that \(g: \Gamma \times T \rightarrow S\) is a random operator with \(g(\gamma,0)=0\) satisfying

$$ {\mathcal{N}}\bigl(\Xi _{\eta } g(\gamma,t_{1}, \dots,t_{p},s_{1},\dots,s_{d}), \tau \bigr) \succeq \varphi \bigl((t_{1},\dots,t_{p},s_{1}, \dots,s_{d}),\tau \bigr) $$
(4.4)

and

$$ {\mathcal{N}}\bigl(g\bigl(\gamma,[t,s,p]\bigr) - \bigl[g( \gamma,t), g(\gamma,s), g( \gamma,p)\bigr],\tau \bigr)\succeq \psi \bigl((t,s,p), \tau \bigr) $$
(4.5)

for all \(\eta \in \mathbb{T}\)1 and all \(t_{1},\dots,t_{p},s_{1},\dots,s_{d},t,s,p \in T\) and \(\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Then there exists a unique \(C^{*}\)-tash \({\mathfrak{H}}: \Gamma \times T \rightarrow S\) such that

$$ {\mathcal{N}}\bigl(g(\gamma,t)-{\mathfrak{H}}(\gamma,t),\tau \bigr)\succeq \varphi \bigl(\bigl(\overbrace{0,\ldots,0,t,\ldots,t}^{{n+d}{\textit{-times}}} \bigr),2 \tau \bigl(d-d^{q}\bigr) \bigr) $$
(4.6)

for all \(t\in T,\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\).

Proof

Let \(0< q<1\) and \(0<\sigma <3\) (the other cases are similar).

Putting \(\eta =1\), \(t_{1}=\cdots =t_{p}=0\) and \(s_{1}=\cdots =s_{d}=t\) in (4.4), we get

$$ {\mathcal{N}}\bigl(2g(\gamma,dt)-2dg(\gamma,t),\tau \bigr)\succeq \varphi \bigl(\bigl( \overbrace{0,\dots,0}^{p},\overbrace{t, \dots,t}^{d}\bigr),\tau \bigr) $$
(4.7)

for all \(t\in T,\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Replacing t by \(d^{n} t\) in (4.7), we get

$$ {\mathcal{N}} \biggl(\frac{1}{d^{n+1}}g\bigl(\gamma,d^{n+1}t\bigr)- \frac{1}{d^{n}}g\bigl(\gamma,d^{n}t\bigr),\tau \biggr) \succeq \varphi \bigl(\bigl( \overbrace{0,\dots,0}^{p},\overbrace{t, \dots,t}^{d}\bigr),2d\tau d^{(1-q)n}\bigr) $$

for all \(t\in T,\gamma \in \Gamma \), all nonnegative integers n and \(\tau \in \mathcal{G}^{\circ }\). Therefore,

$$\begin{aligned} &{\mathcal{N}} \biggl(\frac{1}{d^{n+m}}g\bigl( \gamma,d^{n+m}t\bigr)- \frac{1}{d^{m}}g\bigl(\gamma,d^{m}t \bigr),\tau \biggr) \\ &\quad\succeq \varphi \biggl(\bigl( \overbrace{0, \dots,0}^{p},\overbrace{t,\dots,t}^{d}\bigr), \frac{2d\tau }{\sum_{k=m}^{m+n}d^{(q-1)k}} \biggr) \end{aligned}$$
(4.8)

for all \(t\in T\), \(n,m\in \mathbb{N}\) and \(\tau \in \mathcal{G}^{\circ }\), and it follows that \(\{\frac{1}{d^{n}} g(\gamma,d^{n} t)\}\) is a Cauchy sequence for every \(t \in A\). The completeness of B implies that \(\{\frac{1}{d^{n}} g(\gamma,d^{n} t)\}\) converges. Thus we can define the random operator \({\mathfrak{H}}: \Gamma \times T \rightarrow S\) by

$$ {\mathfrak{H}}(\gamma,t): = \lim_{n\to \infty } \frac{1}{d^{n}} g \bigl( \gamma,d^{n} t\bigr) $$

for all \(t \in T,\gamma \in \Gamma \). Putting \(m =0\) and letting \(n \to \infty \) in (4.8), we get (4.6). We conclude from (4.1), (4.3), and (4.4) that

$$\begin{aligned} & {\mathcal{N}} \Biggl(2{\mathfrak{H}}\Biggl(\gamma, \frac{\sum_{j=1}^{p} \eta t_{j}}{2}+\sum _{j=1}^{d} \eta s_{j}\Biggr) - \sum_{j=1}^{p} \eta {\mathfrak{H}}( \gamma,t_{j})-2 \sum_{j=1}^{d} \eta {\mathfrak{H}}(\gamma,s_{j}),\tau \Biggr) \\ & \quad = \lim_{n\to \infty } {\mathcal{N}} ( \frac{1}{d^{n}} \Biggl( 2 g\Biggl( \gamma,d^{n}\frac{\sum_{j=1}^{p} \eta t_{j}}{2}+d^{n}\sum _{j=1}^{d} \eta s_{j}\Biggr) \\ &\qquad{}- \sum _{j=1}^{p} \eta g\bigl(\gamma,d^{n} t_{j}\bigr)-2 \sum_{j=1}^{d} \eta g\bigl(\gamma,d^{n}s_{j}\bigr),\tau \Biggr) \\ & \quad \succeq \lim_{n\to \infty } \varphi \bigl(\bigl(d^{n}(t_{1}, \dots,t_{p},s_{1}, \dots,s_{d}) \bigr),{d^{n}} \tau \bigr) \\ & \quad = \lim_{n\to \infty } \varphi \biggl(( t_{1}, \dots,t_{p},s_{1}, \dots,s_{d}), \frac{d^{n}}{d^{nq}}\tau \biggr) \\ & \quad=1 \end{aligned}$$

for all \(\eta \in \mathbb{T}\)1, \(t_{1}, \dots, t_{p}, s_{1}, \dots, s_{d} \in T \), \(\gamma \in \Gamma \), and \(\tau \in \mathcal{G}^{\circ }\). Hence

$$ 2{\mathfrak{H}} \Biggl(\gamma,\frac{\sum_{j=1}^{p} \eta t_{j}}{2}+\sum _{j=1}^{d} \eta s_{j} \Biggr) = \sum _{j=1}^{p} \eta {\mathfrak{H}}( \gamma,t_{j})+2 \sum_{j=1}^{d} \eta {\mathfrak{H}}(\gamma,s_{j}) $$

for all \(\eta \in \mathbb{T}\)1 and all \(t_{1}, \dots, t_{p}, s_{1}, \dots, s_{d} \in T\). Thus \({\mathfrak{H}}(\lambda t+\eta s)=\lambda {\mathfrak{H}}(\gamma,t)+ \eta {\mathfrak{H}}(\gamma,s)\) for all \(\lambda, \eta \in \mathbb{T}\)1 and all \(t, s \in T\).

Therefore, from Lemma 4 the random operator \({\mathfrak{H}}: \Gamma \times T \rightarrow S\) is \(\mathbb{C}\)-linear.

We conclude from (4.2), (4.3), and (4.5) that

$$ \begin{aligned} & {\mathcal{N}} \bigl({\mathcal{H}}\bigl(\gamma,[t, s, p]\bigr)- \bigl[{\mathcal{H}}( \gamma,t), {\mathcal{H}}(\gamma,s), { \mathcal{H}}(\gamma,p)\bigr],\tau \bigr) \\ &\quad =\lim_{n\to \infty }{\mathcal{N}}\biggl(\frac{1}{d^{3n}} \bigl(g \bigl( \gamma,\bigl[d^{n} t, d^{n} s, d^{n} p \bigr] \bigr) - \bigl[g\bigl(\gamma,d^{n} t\bigr), g\bigl( \gamma,d^{n} s\bigr), g\bigl(\gamma,d^{n} p\bigr) \bigr] \bigr),\tau \biggr) \\ & \quad=\lim_{n\to \infty }{\mathcal{N}} \bigl( g \bigl(\gamma, \bigl[d^{n} t, d^{n} s, d^{n} p\bigr] \bigr) - \bigl[g\bigl(\gamma,d^{n} t\bigr),g\bigl(\gamma,d^{n} s \bigr), g\bigl( \gamma,d^{n} p\bigr) \bigr],{d^{3n}}\tau \bigr) \\ &\quad\succeq \lim_{n\to \infty }\psi \bigl(\bigl(d^{n} t, d^{n} s, d^{n} p\bigr),{d^{3n}} \tau \bigr) \\ &\quad= \lim_{n\to \infty }\psi \biggl((t,s,p), \frac{d^{3n}}{d^{n\sigma }} \tau \biggr)=1 \end{aligned} $$

for all \(t, s,p \in T,\gamma \in \Gamma \), and \(\tau \in \mathcal{G}^{\circ }\). Thus

$$ {\mathcal{H}}\bigl(\gamma,[t, s, p]\bigr) = \bigl[ {\mathcal{H}}(\gamma,t), { \mathcal{H}}(\gamma,s), {\mathcal{H}}(\gamma,p)\bigr] $$

for all \(t, s, p \in T\) and \(\gamma \in \Gamma \).

Consider another generalized Cauchy–Jensen additive random operator \({\mathcal{K}}: \Gamma \times T \rightarrow S\) satisfying (4.6). Then we have

$$\begin{aligned} {\mathcal{N}}\bigl({\mathcal{H}}(\gamma,t)-{\mathcal{K}}(\gamma,t),\tau \bigr)&=\lim_{n \to \infty }{\mathcal{N}} \biggl(\frac{1}{d^{n}} \bigl(g\bigl(\gamma,d^{n} t\bigr)-{ \mathcal{K}}\bigl( \gamma,d^{n} t\bigr)\bigr),\tau \biggr) \\ &= \lim_{n\to \infty }{\mathcal{N}} \bigl( g\bigl( \gamma,d^{n} t\bigr)-{ \mathcal{K}}\bigl(\gamma,d^{n} t \bigr),d^{n}\tau \bigr) \\ &\succeq \lim_{n\to \infty } \varphi \bigl(\bigl(\overbrace{0, \dots,0}^{p}, \overbrace{d^{n}t,\dots,d^{n}t}^{d} \bigr),2\tau d^{n}\bigl(d-d^{q}\bigr) \bigr) \\ &= \lim_{n\to \infty } \varphi \biggl(\bigl(\overbrace{0, \dots,0}^{p}, \overbrace{t,\dots,t}^{d}\bigr), \biggl( \frac{2\tau d^{n}(d-d^{q})}{d^{nq}} \biggr) \biggr) \\ &=1 \end{aligned}$$

for all \(t \in T,\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Then \({\mathcal{H}}(\gamma,t)={\mathcal{K}}(\gamma,t)\) for all \(t \in T\). Thus the random operator \({\mathcal{H}}: \Gamma \times T\rightarrow S\) is a unique \(C^{*}\)-tash satisfying (4.6), as desired. □

Theorem 5

Let \(q<1\) and \(\sigma <2\). Let \(g:\Gamma \times T \rightarrow S\) be a random operator satisfying (4.1), (4.2), (4.3), (4.4), and (4.5). If there exist a real number \(\lambda >1 (0<\lambda <1)\) and an element \(t_{0}\in T\) such that \(\lim_{n\rightarrow \infty } \frac{1}{\lambda ^{n}} g(\gamma, \lambda ^{n} t_{0}) = e' (\lim_{n\rightarrow \infty } \lambda ^{n} g(\gamma,\frac{t_{0}}{\lambda ^{n}}) = e' )\) (identity element), then the random operator \(g: \Gamma \times T \rightarrow S\) is a \(C^{*}\)-tash.

Proof

Applying Theorem 4, we get that there exists a unique \(C^{*}\)-tash \({\mathcal{H}}:\Gamma \times T \rightarrow S\) satisfying (4.6). Now,

$$ {\mathcal{H}}(\gamma,t)=\lim_{n\rightarrow \infty } \frac{1}{\lambda ^{n}} g\bigl(\gamma,\lambda ^{n} t\bigr), \quad\biggl({ \mathcal{H}}(\gamma,t)=\lim_{n\rightarrow \infty } \lambda ^{n} g \biggl( \gamma,\frac{t}{\lambda ^{n}}\biggr) \biggr) $$
(4.9)

for all \(t\in T\) and all real numbers \(\lambda >1 (0<\lambda <1)\). Therefore, from the assumption we get that \({\mathcal{H}}(\gamma,t_{0})=e'\). Let \(\lambda >1\) and \(\lim_{n\rightarrow \infty } \frac{1}{\lambda ^{n}} g(\gamma, \lambda ^{n} t_{0}) = e'\). It follows from (4.5) and (4.9) that

$$\begin{aligned} & {\mathcal{N}}\bigl(\bigl[{\mathcal{H}}(\gamma,t),{\mathcal{H}}(\gamma,s),{ \mathcal{H}}(\gamma,p)\bigr]-\bigl[{\mathcal{H}}(\gamma,t),{\mathcal{H}}( \gamma,s),g( \gamma,p)\bigr],\tau \bigr) \\ &\quad={\mathcal{N}}\bigl({\mathcal{H}}[\gamma,t,s,p]-\bigl[{\mathcal{H}}( \gamma,t),{ \mathcal{H}}(\gamma,s),{\mathcal{H}}(\gamma,p)\bigr],\tau \bigr) \\ &\quad=\lim_{n\rightarrow \infty }{\mathcal{N}} \biggl( \frac{1}{\lambda ^{2n}}\bigl(g \bigl(\bigl[\gamma,\lambda ^{n} t,\lambda ^{n} s, p\bigr] \bigr) - \bigl[g\bigl(\gamma,\lambda ^{n} t\bigr),g\bigl(\lambda ^{n} s\bigr),g(\gamma,z) \bigr]\bigr),\tau \biggr) \\ &\quad=\lim_{n\rightarrow \infty }{\mathcal{N}} \bigl( g\bigl(\bigl[\gamma,\lambda ^{n} t,\lambda ^{n} s, p\bigr]\bigr) - \bigl[g\bigl(\gamma, \lambda ^{n} t\bigr),g\bigl(\gamma,\lambda ^{n} s\bigr),g( \gamma,p) \bigr],\lambda ^{2n}\tau \bigr) \\ &\quad\succeq \lim_{n\rightarrow \infty } \psi \bigl(\bigl(\lambda ^{t}, \lambda ^{s}, \lambda ^{p}\bigr),\lambda ^{2n}\tau \bigr) \\ &\quad= \lim_{n\rightarrow \infty } \psi \biggl((t,s,p), \frac{\lambda ^{2n}}{\lambda ^{2n\sigma }}\tau \biggr) \\ &\quad =1 \end{aligned}$$

for all \(t\in T,\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Thus \([{\mathcal{H}}(\gamma,t),{\mathcal{H}}(\gamma,s),{\mathcal{H}}( \gamma,p)]=[{\mathcal{H}}(\gamma,t),{\mathcal{H}}(\gamma,s),g( \gamma,p)]\) for all \(t,s,p\in T\). Letting \(t=s=t_{0}\) in the last equality, we get \(g(\gamma,t)={\mathcal{H}}(\gamma,p)\) for all \(p\in T\).

Similarly, one can show that \({\mathcal{H}}(\gamma,t)=g(\gamma,t)\) for all \(t\in T\) when \(0<\lambda <1\) and \(\lim_{n\rightarrow \infty } \lambda ^{n} g(\gamma, \frac{t_{0}}{\lambda ^{n}})=e'\). Therefore, the random operator \(g:\Gamma \times T \rightarrow S\) is a \(C^{*}\)-tash. □

Theorem 6

Let \(q>1\) and \(\sigma >3\). Let \(g:\Gamma \times T \rightarrow S\) be a random operator satisfying (4.4) and (4.5). If there exist a real number \(0<\lambda <1\ (\lambda >1)\) and an element \(t_{0}\in T\) such that \(\lim_{n\rightarrow \infty } \frac{1}{\lambda ^{n}} g(\gamma, \lambda ^{n} t_{0}) = e' (\lim_{n\rightarrow \infty } \lambda ^{n} g(\gamma,\frac{t_{0}}{\lambda ^{n}}) = e' )\), then the random operator \(g:\Gamma \times T \rightarrow S\) is a \(C^{*}\)-tash.

Proof

The proof is similar to the proof of Theorem 5, and so we omit it. □

Example 9

Consider q and σ such that \(q<1\) and \(\sigma < 3\). Suppose that \(g: \Gamma \times T \rightarrow S\) is a random operator with \(g(\gamma,0)=0\) satisfying

$$\begin{aligned} & {\mathcal{N}}\bigl(\Xi _{\eta } g(\gamma,t_{1}, \dots,t_{p},s_{1},\dots,s_{d}), \tau \bigr) \\ &\quad\succeq \operatorname{diag} \biggl[ \frac{\tau }{\tau +(\sum_{j=1}^{p} \Vert t_{j} \Vert ^{q} +\sum_{j=1}^{d} \Vert s_{j} \Vert ^{q})}, \exp \biggl(- \frac{\sum_{j=1}^{p} \Vert t_{j} \Vert ^{q} +\sum_{j=1}^{d} \Vert s_{j} \Vert ^{q}}{\tau } \biggr) \biggr] \end{aligned}$$
(4.10)

and

$$\begin{aligned} &{\mathcal{N}}\bigl(g\bigl(\gamma,[t,s,p]\bigr) - \bigl[g( \gamma,t), g(\gamma,s), g( \gamma,p)\bigr],\tau \bigr)\\ &\quad \succeq \operatorname{diag} \biggl[ \frac{\tau }{\tau ( \Vert t \Vert ^{q} + \Vert s \Vert ^{q})}, \exp \biggl(- \frac{ \Vert t \Vert ^{q} + \Vert s \Vert ^{q}}{\tau } \biggr) \biggr] \end{aligned}$$
(4.11)

for all \(\eta \in \mathbb{T}\)1 and all \(t_{1},\dots,t_{p},s_{1},\dots,s_{d},t,s,p \in T\) and \(\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Then there exists a unique \(C^{*}\)-tash \({\mathfrak{H}}: \Gamma \times T \rightarrow S\) such that

$$ {\mathcal{N}}\bigl(g(\gamma,t)-{\mathfrak{H}}(\gamma,t),\tau \bigr)\succeq \operatorname{diag} \biggl[\frac{2\tau (d-d^{q})}{2\tau (d-d^{q})+(d \Vert t \Vert ^{q})}, \exp \biggl(- \frac{d \Vert t \Vert ^{q}}{2\tau (d-d^{q})} \biggr) \biggr] $$
(4.12)

for all \(t\in T,\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\).

To see this, put

$$\begin{aligned} &\varphi \bigl((t_{1},\dots,t_{p},s_{1}, \dots,s_{d}),\tau \bigr) \\ &\quad =\operatorname{diag} \biggl[ \frac{\tau }{\tau +(\sum_{j=1}^{p} \Vert t_{j} \Vert ^{q} +\sum_{j=1}^{d} \Vert s_{j} \Vert ^{q})}, \exp \biggl(- \frac{\sum_{j=1}^{p} \Vert t_{j} \Vert ^{q} +\sum_{j=1}^{d} \Vert s_{j} \Vert ^{q}}{\tau } \biggr) \biggr] \end{aligned}$$
(4.13)

and

$$\begin{aligned} \psi \bigl((t,s,p),\tau \bigr)=\operatorname{diag} \biggl[ \frac{\tau }{\tau ( \Vert t \Vert ^{q} + \Vert s \Vert ^{q})}, \exp \biggl(- \frac{ \Vert t \Vert ^{q} + \Vert s \Vert ^{q}}{\tau } \biggr) \biggr] \end{aligned}$$
(4.14)

for all \(t_{1},\dots,t_{p},s_{1},\dots,s_{d},t,s,p \in T\) and \(\gamma \in \Gamma \) and \(\tau \in \mathcal{G}^{\circ }\). Now, applying Theorem 4, we get (4.12).

Example 10

Let \(q<1\) and \(\sigma <2\). Let \(g:\Gamma \times T \rightarrow S\) be a random operator satisfying (4.10), (4.11). If there exist a real number \(\lambda >1 (0<\lambda <1)\) and an element \(t_{0}\in T\) such that \(\lim_{n\rightarrow \infty } \frac{1}{\lambda ^{n}} g(\gamma, \lambda ^{n} t_{0}) = e' (\lim_{n\rightarrow \infty } \lambda ^{n} g(\gamma,\frac{t_{0}}{\lambda ^{n}}) = e' )\) (identity element), then the random operator \(g: \Gamma \times T \rightarrow S\) is a \(C^{*}\)-tash.

Define control functions φ and ψ as in (4.13) and (4.14). Theorem 5 guarantees the result.

5 Conclusion

In this paper we defined a new generalization of uncertain normed spaces by replacing the classical range by \(C^{*}\)-AV fuzzy sets and using triangular norms defined on the positive section of an order commutative \(C^{*}\)-algebra, named \(C^{*}\)-AVF-spaces. Also, by a super \(C^{*}\)-AVF controller, we considered Hyers–Ulam–Rassias stability of stochastic \((\Theta,\Upsilon,\Xi )\)-derivations on \(C^{*}\)-AVF Lie \(C^{*}\)-algebras.