1 Introduction

Fractals are mathematical developments that present self-similarity over a scope of scales and noninteger (fractal) measurements. Attributable to these properties, Yang [1] contemplated a new investigation to tackle some nondifferentiable problems that can be utilized to productively assess the geometrical multifaceted nature, and the anomaly of shapes and examples seen in human disease through the utilization of customary Euclidean geometry in such figurings is all the more challenging [2, 3]. The use of fractal analysis in image processing, machine learning, cryptography, electrochemical processes, physics, diagnostic imagining, neuroscience, image analysis, acoustic, physiology, and Riemann zeta zeros has shown considerable guarantee for estimating forms that have changed as ordinary-partial differential equations [48]. Regardless of the benefits of fractal mathematics and various examinations exhibiting its pertinence to porous media, aquifer, turbulence, and more other media commonly displaying fractal properties, numerous specialists and researchers stay uninformed of its latent capacity involving local fractional articulations. Moreover, local fractional derivatives and integrals are viably applied numerous conditions, for instance, the Fokker–Planck equation, the diffusion and relaxation equation in fractal space, the fractal heat conduction equation, and the local fractional diffusion equation [9]. Moreover, fractional calculus (integrals and derivatives) has gained significant interest throughout the past three decades due chiefly to its incontestable utilities in numerous areas of science and technology [10, 11]. The fractional operator does indeed provide many potentially helpful tools for numerous problems involving special functions of mathematical science and their extensions and generalizations in one and several variables. Fractional integrals are utilized for depiction of various hereditary and memory effects of different processes and constituents in physical processes like seepage flow in fluid dynamic traffic model and nonlinear oscillations of earthquake [12, 13].

Fractional integrals have been analyzed for integral inequalities and solution of fractional differential and difference equations. The Hermite–Hadamard inequality [14] is one of such type inequalities, extensively used in the literature and providing a necessary and sufficient condition for a function to be convex.

Now we recall the Hermite–Hadamard inequality. Let \(\mathcal{G}:\Omega \subseteq \mathbb{R}\rightarrow \mathbb{R}\) be a convex function. Then we have the double inequality

$$\begin{aligned} \mathcal{G} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr) \leq \frac{1}{\eta _{2}-\eta _{1}} \int _{\eta _{1}}^{\eta _{2}} \mathcal{G}(\delta )\,d\delta \leq \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2} \end{aligned}$$
(1.1)

for all \(\eta _{1}, \eta _{2}\in \Omega \) with \(\eta _{1}\neq \eta _{2}\).

Recently, generalizations, extensions, improvements, and variants of the Hermite–Hadamard inequality have attracted the attention of many researchers due to its wide applications in pure and applied mathematics. The main purpose of the paper is presenting the fundamental basis of fractals and illustrating analysis of fractal sets and related estimations, in particular, establishing the integral inequalities for the functions whose local fractional differentiation in the absolute values are generalized convex.

Local fractional inequalities and their fertile applications in pure and applied mathematics have attracted the attention of many researchers [15, 16]. For example, Mo et al. [17] derived the generalized Hermite–Hadamard inequality for generalized convex functions. Chen et al. [18] explored it extensively by using the Hölder inequality and some other related variants in a fractal domain. The concept of a generalized harmonically convex function was introduced by Sun [19].

In this paper, we investigate new concepts of differentiation and integration taking into account the fractal sets and generalized convex functions. We present other important auxiliary results, handled by this new approach for higher-order local differentiability, which enable us to give certain estimates of the difference between the left and middle parts of the Hermite–Hadamard inequality. On fractal sets, we carry out two examples illustrating the applicability of the proposed methodology. As an application, we derived some novel cases in local fractional trapezoid form. Generalized new special cases show an impressive performance of the local fractional integration. Some special cases are correlated with existing results on classical convexity.

2 Preliminaries

In this section, we present a different concept of differentiation, which consolidates the ideas of fractional differentiation and fractal derivative. We denote the sets of natural numbers, positive integers, rational numbers, and real numbers by \(\mathbb{N}\), \(\mathbb{Z}\), \(\mathbb{Q}\), and \(\mathbb{R}\), respectively.

Whenever we consider the α̌-type set \(\mathbb{R}^{\check{\alpha }}\) of real line numbers, we implicitly suppose that \(0<\check{\alpha }\leq 1\). Two binary operations, the addition “+” and the multiplication “⋅” (which is conventionally omitted), on the α̌-type set \(\mathbb{R}^{\check{\alpha }}\) of real line numbers are characterized as follows. Let \(\zeta _{1}^{\check{\alpha }}, \zeta _{2}^{\check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\). Then the addition “+” and multiplication “⋅” are defined by \(\zeta _{1}^{\check{\alpha }}+\zeta _{2}^{\check{\alpha }}=(\zeta _{1}+ \zeta _{2})^{\check{\alpha }}\) and \(\zeta _{1}^{\check{\alpha }}\cdot \zeta _{2}^{\check{\alpha }}=(\zeta _{1} \cdot \zeta _{2})^{\check{\alpha }}\), respectively.

We have the following statements:

• If \((\mathbb{R}^{\check{\alpha }},+)\) is an Abelian group and \(\zeta _{1}^{\check{\alpha }},\zeta _{2}^{\check{\alpha }}, \zeta _{3}^{ \check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\). then

\((i)\) \(\zeta _{1}^{\check{\alpha }}+\zeta _{2}^{\check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\);

\((ii)\) \(\zeta _{1}^{\check{\alpha }}+\zeta _{2}^{\check{\alpha }}= \zeta _{2}^{\check{\alpha }}+\zeta _{1}^{\check{\alpha }}\);

\((iii)\) \(\zeta _{1}^{\check{\alpha }}+(\zeta _{2}^{\check{\alpha }}+ \zeta _{3}^{\check{\alpha }}) =(\zeta _{1}^{\check{\alpha }}+\zeta _{2}^{ \check{\alpha }})+\zeta _{3}^{\check{\alpha }}\);

\((iv)\) \(0^{\check{\alpha }}+\zeta _{1}^{\check{\alpha }}=\zeta _{1}^{ \check{\alpha }}+0^{\check{\alpha }}=\zeta _{1}^{\check{\alpha }}\) (where \(0^{\check{\alpha }}\) is the additive identity of \((\mathbb{R}^{\check{\alpha }},+)\));

\((v)\) \(\zeta _{1}^{\check{\alpha }}+(-\zeta _{1}^{\check{\alpha }}) =(- \zeta _{1}^{\check{\alpha }})+\zeta _{1}^{\check{\alpha }}=0^{ \check{\alpha }}\) (where \(-\zeta ^{\check{\alpha }}\) is the inverse element of \(\zeta ^{\check{\alpha }}\));

•• If \((\mathbb{R}^{\check{\alpha }}\setminus \{0^{\check{\alpha }}\},\cdot )\) is an Abelian group and \(\zeta _{1}^{\check{\alpha }},\zeta _{2}^{\check{\alpha }}, \zeta _{3}^{ \check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\), then

\((vi)\) \(\zeta _{1}^{\check{\alpha }}\cdot \zeta _{2}^{\check{\alpha }} \in \mathbb{R}^{\check{\alpha }}\);

\((vii)\) \(\zeta _{1}^{\check{\alpha }}\cdot \zeta _{2}^{\check{\alpha }}= \zeta _{2}^{\check{\alpha }}\cdot \zeta _{1}^{\check{\alpha }}\);

\((viii)\) \(\zeta _{1}^{\check{\alpha }}\cdot (\zeta _{2}^{ \check{\alpha }}\cdot \zeta _{3}^{\check{\alpha }}) =(\zeta _{1}^{ \check{\alpha }}\cdot \zeta _{2}^{\check{\alpha }})\cdot \zeta _{3}^{ \check{\alpha }}\);

\((ix)\) \(1^{\check{\alpha }}\cdot \zeta _{1}^{\check{\alpha }}=\zeta _{1}^{ \check{\alpha }}\cdot 1^{\check{\alpha }}=\zeta _{1}^{\check{\alpha }}\) (where \(1^{\check{\alpha }}\) is the multiplicative identity of \((\mathbb{R}^{\check{\alpha }},\cdot )\));

\((x)\) \(\zeta _{1}^{\check{\alpha }}\cdot (\frac{1}{\zeta _{1}})^{ \check{\alpha }} =(\frac{1}{\zeta _{1}})^{\check{\alpha }}\cdot \zeta _{1}^{ \check{\alpha }}=1^{\check{\alpha }}\) (where \((\frac{1}{\zeta })^{\check{\alpha }}\) is the inverse element of \(\zeta ^{\check{\alpha }}\)).

••• The distributive law: \(\zeta _{1}^{\check{\alpha }}\cdot (\zeta _{2}^{\check{\alpha }}+ \zeta _{3}^{\check{\alpha }}) =\zeta _{1}^{\check{\alpha }}\cdot \zeta _{2}^{ \check{\alpha }}+\zeta _{1}^{\check{\alpha }}\cdot \zeta _{3}^{ \check{\alpha }}\) for all \(\zeta _{1}^{\check{\alpha }}, \zeta _{2}^{\check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\).

Proposition 2.1

We have:

\((i)\) \((\mathbb{R}^{\check{\alpha }}, +, \cdot )\) is a field;

\((ii)\) Both the additive identity \(0^{\check{\alpha }}\) and the multiplication identity \(1^{\check{\alpha }}\) are unique;

\((iii)\) Both the additive inverse element and the multiplicative inverse element are unique;

\((iv)\) For each \(\zeta _{1}^{\check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\setminus \{0^{\check{\alpha }}\}\), its inverse element \((\frac{1}{\zeta _{1}})^{\check{\alpha }}\) can be written as \(\frac{1^{\check{\alpha }}}{\zeta _{1}^{\check{\alpha }}}\) or as \(\frac{1}{\zeta _{1}^{\check{\alpha }}}\); for each \(\zeta _{1}^{\check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\), its inverse element \((-\zeta _{1})^{\check{\alpha }}\) can be written as \(-\zeta _{1}^{\check{\alpha }}\);

\((v)\) The order “<” in \((\mathbb{R}^{\check{\alpha }}, +)\) is defined as follows: \(\zeta _{1}^{\check{\alpha }}<\zeta _{2}^{\check{\alpha }}\in \mathbb{R}^{\check{\alpha }}\) if and only if \(\zeta _{1}<\zeta _{2}\in \mathbb{R}\). In particular, \((\mathbb{R}^{\check{\alpha }},+,\cdot ,<)\) is an ordered field like \((\mathbb{R},+,\cdot ,<)\).

Now let us demonstrate the idea of the local fractional continuity.

Definition 2.2

Let \(\mathcal{G}:\mathbb{R}\rightarrow \mathbb{R}^{\check{\alpha }}\) be a nondifferentiable mapping. Then \(\rho \rightarrow \mathcal{G}(\epsilon )\) is said to be locally fractional continuous at \(\epsilon _{\circ }\) if for any \(\epsilon >0\), there exists \(\kappa >0\) such that

$$\begin{aligned} \bigl\vert \mathcal{G}(\epsilon )-\mathcal{G}(\epsilon _{\circ }) \bigr\vert < \epsilon ^{\check{\alpha }} \end{aligned}$$

whenever \(\vert \epsilon -\epsilon _{\circ }\vert <\kappa \). If \(\mathcal{G}(\epsilon )\) is locally continuous on \((\eta _{1},\eta _{2})\), then we write \(\mathcal{G}(\epsilon )\in \mathbb{C}_{\check{\alpha }}(\eta _{1}, \eta _{2})\).

Definition 2.3

The local fractional derivative of \(\mathcal{G}(\epsilon )\) of order α̌ at \(\epsilon =\epsilon _{\circ }\) is defined by

$$\begin{aligned} \mathcal{G}^{(\check{\alpha })}(\epsilon _{\circ })={}_{\epsilon _{ \circ }} \mathcal{D}_{\epsilon }^{\check{\alpha }}\mathcal{G}(\epsilon ) = \frac{d^{\check{\alpha }}\mathcal{G}(\epsilon )}{d\epsilon ^{\check{\alpha }}} \bigg\vert _{\epsilon =\epsilon _{\circ }} =\lim_{\epsilon \rightarrow \epsilon _{\circ }} \frac{\Delta ^{\check{\alpha }}(\mathcal{G}(\epsilon )-\mathcal{G}(\epsilon _{\circ }))}{(\epsilon -\epsilon _{\circ })^{\check{\alpha }}}, \end{aligned}$$

where \(\Delta ^{\check{\alpha }}(\mathcal{G}(\epsilon )-\mathcal{G}( \epsilon _{\circ })) =\Gamma (\check{\alpha }+1)(\mathcal{G}(\epsilon )- \mathcal{G}(\epsilon _{\circ }))\). We also write \(\mathcal{G}^{(\check{\alpha })}(\epsilon )=\mathcal{D}_{\epsilon }^{ \check{\alpha }}\mathcal{G}(\epsilon )\). If there exists \(\mathcal{G}^{(k+1)\check{\alpha }}(\epsilon )= \overbrace{\mathcal{D}_{\epsilon }^{\check{\alpha }}\cdots \mathcal{D}_{\epsilon }^{\check{\alpha }}}^{(k+1) \text{ times}} \mathcal{G}(\epsilon )\) for all \(\epsilon \in \Omega \subseteq \mathbb{R}\), then we write \(\mathcal{G}\in \mathcal{D}_{(k+1)\check{\alpha }}(\mathcal{\Omega })\), where \(k=0,1,2,\ldots \) .

Definition 2.4

Let \(\mathcal{G}(\epsilon )\in \mathbb{C}_{\check{\alpha }}[\eta _{1}, \eta _{2}]\), and let \(\Delta =\{\varrho _{0},\varrho _{1},\ldots ,\varrho _{N}\} (N\in \mathbb{N})\) be a partition of \([\eta _{1},\eta _{2}]\) such that \(\eta _{1}=\varrho _{0}<\varrho _{1}<\cdots <\varrho _{N}=\eta _{2}\). Then the local fractional integral of \(\mathcal{G}\) on \([\eta _{1},\eta _{2}]\) of order α̌ is defined by

$$\begin{aligned} {\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}( \epsilon ) =\frac{1}{\Gamma (1+\check{\alpha })} \int _{\eta _{1}}^{ \eta _{2}}\mathcal{G}(\varrho ) (d\varrho )^{\check{\alpha }} = \frac{1}{\Gamma (1+\check{\alpha })}\lim_{\delta \varrho \rightarrow 0}\sum _{j=0}^{N-1}\mathcal{G}(\varrho _{j}) ( \Delta \varrho _{j}), \end{aligned}$$

where \(\delta \varrho =\max \{\Delta \varrho _{1},\Delta \varrho _{2}, \ldots ,\Delta \varrho _{N-1}\}\) and \(\Delta \varrho _{j}=\varrho _{j+1}-\varrho _{j}\) (\(j=0,\ldots ,N-1\)). It follows that \({}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}( \epsilon )=0\) if \(\eta _{1}=\eta _{2}\) and \({}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}( \epsilon )= - {}_{\eta _{2}}\mathcal{I}_{\eta _{1}}^{(\check{\alpha })} \mathcal{G}(\epsilon )\) if \(\eta _{1}<\eta _{2}\). If for all \(\epsilon \in [\eta _{1},\eta _{2}]\), there exists \({}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}( \epsilon )\), then we write \(\mathcal{G}(\epsilon )\in \mathcal{I}_{\epsilon }^{\check{\alpha }}[ \eta _{1},\eta _{2}]\).

Lemma 2.5

(See [1])

We have:

\((1)\) If \(\mathcal{G}(u)=\mathcal{G}^{(\check{\alpha })}(u)\in \mathbb{C}_{ \check{\alpha }}[\eta _{1},\eta _{2}]\), then

$$\begin{aligned} {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u)= \mathcal{G}(\eta _{2})-\mathcal{G}(\eta _{1}); \end{aligned}$$

\((2)\) If \(\mathcal{G}(u), \mathcal{H}(u)\in \mathcal{D}_{\check{\alpha }}[\eta _{1}, \eta _{2}]\) and \(\mathcal{G}^{(\check{\alpha })}(u),\mathcal{H}^{(\check{\alpha })}(u) \in \mathbb{C}_{\check{\alpha }}[\eta _{1},\eta _{2}]\), then

$$\begin{aligned} {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \mathcal{H}^{(\check{\alpha })}(u) =\mathcal{G}(u)\mathcal{H}(u) \vert _{\eta _{1}}^{\eta _{2}}-{}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \mathcal{G}^{(\check{\alpha })}(u)\mathcal{H}(u). \end{aligned}$$

Lemma 2.6

(See [1])

We have the formulas

$$\begin{aligned}& \frac{d^{\check{\alpha }}u^{k\check{\alpha }}}{du^{\check{\alpha }}} = \frac{\Gamma (1+k\check{\alpha })}{\Gamma (1+(k-1)\check{\alpha })}u^{(k-1) \check{\alpha }}, \\& \frac{1}{\Gamma (1+\check{\alpha })} \int _{\eta _{1}}^{\eta _{2}}u^{k \check{\alpha }}(du)^{\check{\alpha }} = \frac{\Gamma (1+k\check{\alpha })}{\Gamma (1+(k+1)\check{\alpha })} \bigl(\eta _{2}^{(k+1)\check{\alpha }}-\eta _{1}^{(k+1)\check{\alpha }} \bigr) \quad (k>0). \end{aligned}$$

The following analogue of the classical Hölder inequality for a fractal set \(\mathbb{R}^{\check{\alpha }}\) was established in [18].

Lemma 2.7

(See [18])

Let \(\omega ,\rho >1\) with \(\omega ^{-1}+\rho ^{-1}=1\), and let \(\mathcal{G},\mathcal{H}\in \mathbb{C}_{\check{\alpha }}[\eta _{1}, \eta _{2}]\). Then

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{\eta _{1}}^{\eta _{2}} \bigl\vert \mathcal{G}(u) \mathcal{H}(u) \bigr\vert (du)^{\check{\alpha }}\\& \quad \leq \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{\eta _{1}}^{ \eta _{2}} \bigl\vert \mathcal{G}(u) \bigr\vert ^{\omega }(du)^{\check{\alpha }} \biggr)^{\frac{1}{\omega }} \biggl( \frac{1}{\Gamma (1+\check{\alpha })} \int _{\eta _{1}}^{\eta _{2}} \bigl\vert \mathcal{H}(u) \bigr\vert ^{\rho }(du)^{ \check{\alpha }} \biggr)^{\frac{1}{\rho }}. \end{aligned}$$

Definition 2.8

(See [17])

A function \(\mathcal{G}:\Omega \subseteq \mathbb{R}\rightarrow \mathbb{R}^{ \check{\alpha }}\) is said to be a generalized convex function on Ω if

$$\begin{aligned} \mathcal{G} \bigl(\rho \delta _{1}+(1-\rho )\delta _{2} \bigr)\leq \rho ^{ \check{\alpha }} \mathcal{G}(\delta _{1})+(1-\rho ) \mathcal{G}^{ \check{\alpha }}(\delta _{2}) \end{aligned}$$
(2.1)

for all \(\delta _{1},\delta _{2}\in \Omega \) and \(\rho \in [0,1]\).

We provide two examples for generalized convex functions:

\((1)\) \(\mathcal{G}(\delta )= \delta ^{\check{\alpha }\mu }\) for \(\delta \geq 0\) and \(\mu >1\).

\((2)\) \(\mathcal{G}(\delta )=E_{\check{\alpha }}(\delta ^{\check{\alpha }})\) for \(\delta \in \mathbb{R}\), where \(E_{\check{\alpha }}(\delta ^{\check{\alpha }})=\sum_{i=0}^{ \infty }\frac{\delta ^{\check{\alpha } i}}{\Gamma (1+i\check{\alpha })}\) is the Mittag-Leffler function.

Recently, the fractal theory has achieved a considerable interest. Mo et al. [17] found the following analogue of the Hermite–Hadamard inequality (1.1) for generalized convex functions:

$$\begin{aligned} \mathcal{G} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr)\leq \frac{{\Gamma (1+\check{\alpha })}{}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u)}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \leq \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}}. \end{aligned}$$
(2.2)

3 Identity via first-order local differentiable mappings

To establish our main results, we need the following lemma.

Lemma 3.1

Let \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }} \) (\(0< \check{\alpha }\leq 1\)) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\) and \(\mathcal{G}^{(\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[\eta _{1}, \eta _{2}]\). Then we have

$$\begin{aligned}& \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \\& \quad = \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(\rho -1)^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1-\rho )\eta _{1} \bigr) (d \rho )^{\check{\alpha }} \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1-\rho )\eta _{2} \bigr) (d \rho )^{\check{\alpha }}, \end{aligned}$$
(3.1)

where \(\Gamma (x)=\int _{0}^{\infty }t^{x-1}e^{-t}\,dt\) is the Euler gamma function [2022].

Proof

By using local fractional integration by parts and change of variable we have

$$\begin{aligned}& \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(\rho -1)^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1-\rho )\eta _{1} \bigr) (d \rho )^{\check{\alpha }} \\& \quad = \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \frac{(\rho -1)^{\check{\alpha }}\mathcal{G}(\rho y+(1-\rho )\eta _{1})}{(y-\eta _{1})^{\check{\alpha }}} \bigg\vert _{0}^{1} \\& \qquad {}- \frac{1}{(y-\eta _{1})^{\check{\alpha }}} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\mathcal{G} \bigl(\rho y+(1-\rho )\eta _{1} \bigr) (d\rho )^{ \check{\alpha }} \biggr] \\& \quad = \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \frac{\mathcal{G}(\eta _{1})}{(y-\eta _{1})^{\check{\alpha }}} - \biggl( \frac{1}{y-\eta _{1}} \biggr)^{2\check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{\eta _{1}}^{y}\mathcal{G}(u) (du)^{\check{\alpha }} \biggr] \\& \quad = \frac{(y-\eta _{1})^{\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \mathcal{G}(\eta _{1}) - \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} {}_{\eta _{1}}\mathcal{I}_{y}^{(\check{\alpha })} \mathcal{G}(u) \end{aligned}$$
(3.2)

and

$$\begin{aligned}& \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1-\rho )\eta _{2} \bigr) (d \rho )^{\check{\alpha }} \\& \quad = \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \frac{(1-\rho )^{\check{\alpha }}\mathcal{G}(\rho y+(1-\rho )\eta _{2})}{(y-\eta _{2})^{\check{\alpha }}} \bigg\vert _{0}^{1} \\& \qquad {}+ \frac{1}{(y-\eta _{2})^{\check{\alpha }}} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\mathcal{G} \bigl(\rho y+(1-\rho )\eta _{2} \bigr) (d\rho )^{ \check{\alpha }} \biggr] \\& \quad = \frac{(y-\eta _{2})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[(-1)^{\check{\alpha }} \frac{\mathcal{G}(\eta _{2})}{(y-\eta _{2})^{\check{\alpha }}}+ \biggl( \frac{1}{y-\eta _{2}} \biggr)^{2 \check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{y}^{\eta _{2}}\mathcal{G}(u) (du)^{\check{\alpha }} \biggr] \\& \quad = \frac{(\eta _{2}-y)^{\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \mathcal{G}(\eta _{2}) - \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{2\check{\alpha }}} {}_{y}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u). \end{aligned}$$
(3.3)

By adding identities (3.2) and (3.3) we get the desired identity (3.1). □

4 Hermite–Hadamard-type inequalities for first-order differentiable functions

Using Lemma 3.1, we now give some novel generalizations of the Hermite–Hadamard-type inequality for functions with generalized convex local derivatives.

Theorem 4.1

Let \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }} \) (\(0< \check{\alpha }\leq 1\)) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\), \(\mathcal{G}^{(\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[\eta _{1}, \eta _{2}]\), and \(\vert \mathcal{G}^{(\check{\alpha })}\vert \) is a generalized convex function on Ω. Then

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }}\mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} {}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert \biggr] \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert \biggr] \end{aligned}$$
(4.1)

for all \(y\in [\eta _{1},\eta _{2}]\).

Proof

It follows from Lemma 3.1 and the modulus property that

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{1} \bigr) \bigr\vert (d\rho )^{\check{\alpha }} \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{2} \bigr) \bigr\vert (d\rho )^{\check{\alpha }}. \end{aligned}$$

Since \(\vert \mathcal{G}^{(\check{\alpha })}\vert \) is generalized convex, we get

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1- \rho )^{\check{\alpha }} \bigl[\rho ^{\check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert +(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert \bigr](d\rho )^{\check{\alpha }} \biggr] \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl[\rho ^{\check{\alpha }} \bigl\vert \mathcal{G}^{( \check{\alpha })}(y) \bigr\vert +(1-\rho )^{\check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert \bigr](d\rho )^{ \check{\alpha }} \biggr] \\& \quad = \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert \biggr] \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert \biggr], \end{aligned}$$

where we have used the equalities

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\rho ^{ \check{\alpha }}(1-\rho )^{\check{\alpha }}(d\rho )^{\check{\alpha }} = \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}, \\& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{2 \check{\alpha }}(d\rho )^{\check{\alpha }} = \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}. \end{aligned}$$

This completes the proof. □

Some particular remarkable cases of Theorem 4.1 are as follows.

Corollary 4.2

Under the assumptions of Theorem 4.1, if we take \(y=\frac{\eta _{1}+\eta _{2}}{2}\), then we have

$$\begin{aligned}& \biggl\vert \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} - \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{4^{\check{\alpha }}} \biggl[\frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl[ \bigl\vert \mathcal{G}^{( \check{\alpha })}(\eta _{1}) \bigr\vert + \bigl\vert \mathcal{G}^{( \check{\alpha })}(\eta _{2}) \bigr\vert \bigr] \\& \qquad {}+2^{\check{\alpha }} \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \biggl\vert \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr\vert \biggr]. \end{aligned}$$

Remark 4.3

Using the convexity of \(\vert \mathcal{G}^{(\check{\alpha })}\vert \) in Corollary 4.2, we get

$$\begin{aligned}& \biggl\vert \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} - \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} {}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{4^{\check{\alpha }}} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \bigl[ \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert + \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert \bigr]. \end{aligned}$$

Remark 4.4

If we choose \(\check{\alpha }=1\), then Theorem 4.1, Corollary 4.2, and Remark 4.3 reduce to the results for classical convex functions given in [23, 24].

Theorem 4.5

Let \(\rho , \omega >1\) with \(\rho ^{-1}+\omega ^{-1}=1\), let \(0<\check{\alpha }\leq 1\), and let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }}\) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\), \(\mathcal{G}^{(2\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[ \eta _{1},\eta _{2}]\), and \(\vert \mathcal{G}^{(2\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω. Then

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \biggl( \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })} \biggr)^{1/\omega } \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \biggr]^{1/ \rho } \biggl[ \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \bigl[ \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho }+ \bigl\vert \mathcal{G}^{(\check{\alpha })}( \eta _{1}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \bigl[ \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho }+ \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \biggr] \end{aligned}$$
(4.2)

for all \(y\in [\eta _{1},\eta _{2}]\).

Proof

It follows from Lemma 3.1 and the generalized Hölder integral inequality that

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{1} \bigr) \bigr\vert (d\rho )^{\check{\alpha }} \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{2} \bigr) \bigr\vert (d\rho )^{\check{\alpha }} \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1- \rho )^{\omega \check{\alpha }} (d\rho )^{\check{\alpha }} \biggr)^{1/ \omega } \\& \qquad {}\times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl( \rho y+(1-\rho )\eta _{1} \bigr) \bigr\vert ^{\rho }(d \rho )^{\check{\alpha }} \biggr)^{1/\rho } \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1- \rho )^{\omega \check{\alpha }} (d\rho )^{\check{\alpha }} \biggr)^{1/ \omega } \\& \qquad {}\times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl( \rho y+(1-\rho )\eta _{2} \bigr) \bigr\vert ^{\rho }(d \rho )^{\check{\alpha }} \biggr)^{1/\rho }. \end{aligned}$$
(4.3)

Since \(\vert \mathcal{G}^{(\check{\alpha })}\vert ^{\rho }\) is a generalized convex function, we have

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl( \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })} \biggr)^{1/\omega } \\& \qquad {}\times\biggl[ \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl[\rho ^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{ \rho }+(1-\rho )^{\check{\alpha }} \bigl\vert \mathcal{G}^{( \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho } \bigr](d \rho )^{ \check{\alpha }} \biggr]^{1/\rho } \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl( \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })} \biggr)^{1/\omega } \\& \qquad {}\times\biggl[ \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl[\rho ^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{ \rho }+(1-\rho )^{\check{\alpha }} \bigl\vert \mathcal{G}^{( \check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr](d \rho )^{ \check{\alpha }} \biggr]^{1/\rho } \\& \quad = \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl( \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })} \biggr)^{1/\omega } \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \bigl[ \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho }+ \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \biggr] \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl( \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })} \biggr)^{1/\omega } \\& \qquad {}\times\biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \bigl[ \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho }+ \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \biggr], \end{aligned}$$
(4.4)

where we have used the equality

$$\begin{aligned} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \omega \check{\alpha }}(d\rho )^{\check{\alpha }} = \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })}. \end{aligned}$$

This completes the proof. □

Some particular cases of Theorem 4.5 and corollaries are as follows.

Corollary 4.6

Under the assumptions of Theorem 4.5, if we take \(y=\frac{\eta _{1}+\eta _{2}}{2}\), then we have

$$\begin{aligned}& \biggl\vert \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} - \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} {}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \biggl(\frac{\eta _{2}-\eta _{1}}{4} \biggr)^{\check{\alpha }} \biggl( \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })} \biggr)^{1/\omega } \biggl( \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \biggr)^{1/\rho } \\& \qquad {}\times\biggl[ \biggl[ \biggl\vert \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr\vert ^{\rho }+ \bigl\vert \mathcal{G}^{(\check{\alpha })}( \eta _{1}) \bigr\vert ^{\rho } \biggr]^{1/\rho } \\& \qquad {}+ \biggl[ \biggl\vert \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr\vert ^{\rho }+ \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr]^{1/ \rho } \biggr] \\& \quad \leq \biggl(\frac{\eta _{2}-\eta _{1}}{2} \biggr)^{\check{\alpha }} \biggl( \frac{\Gamma (1+\omega \check{\alpha })}{\Gamma (1+(\omega +1)\check{\alpha })} \biggr)^{1/\omega } \biggl( \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \biggr)^{1/ \rho } \bigl[ \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert + \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert \bigr], \end{aligned}$$

where in the second inequality, we used the inequality

$$ \sum_{i=1}^{p}(\mu _{i}+\nu _{i})^{\kappa }\leq \sum_{i=1}^{p}( \mu _{i})^{\kappa } +\sum_{i=1}^{p}( \nu _{i})^{\kappa } \quad (0 \leq \kappa < 1, \mu _{i}, \nu _{i}\geq 0, i=1,\ldots ,p). $$

Theorem 4.7

Let \(\rho , \omega >1\) with \(\rho ^{-1}+\omega ^{-1}=1\), let \(0<\check{\alpha }\leq 1\), and let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }}\) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\), \(\mathcal{G}^{(\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[\eta _{1}, \eta _{2}]\), and \(\vert \mathcal{G}^{(\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω. Then

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1}) +(\eta _{2}-y)^{\check{\alpha }}\mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} - \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} {}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \biggl( \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \biggr)^{1- \frac{1}{\rho }} \biggl[ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl( \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho } \\& \qquad {}+ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}( \eta _{1}) \bigr\vert ^{\rho } \biggr)^{1/\rho } \\& \qquad {}+ \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl( \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho } \\& \qquad {}+ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr)^{1/\rho } \biggr] \end{aligned}$$
(4.5)

for all \(y\in [\eta _{1}, \eta _{2}]\).

Proof

It follows from Lemma 3.1 and the generalized power-mean inequality that

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{1} \bigr) \bigr\vert (d\rho )^{\check{\alpha }} \\& \qquad{} + \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{2} \bigr) \bigr\vert (d\rho )^{\check{\alpha }} \\& \quad \leq \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl( \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} (d\rho )^{\check{\alpha }} \biggr)^{1-\frac{1}{\rho }} \\& \qquad {}\times\biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} (1- \rho )^{\check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{1} \bigr) \bigr\vert ^{\rho }(d\rho )^{\check{\alpha }} \biggr)^{1/ \rho } \\& \qquad {}+ \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1- \rho )^{\check{\alpha }}(d\rho )^{\check{\alpha }} \biggr)^{1- \frac{1}{\rho }} \\& \qquad {}\times\biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{\check{\alpha }} \bigl\vert \mathcal{G}^{( \check{\alpha })} \bigl(\rho y+(1-\rho )\eta _{2} \bigr) \bigr\vert ^{\rho }(d\rho )^{ \check{\alpha }} \biggr)^{1/\rho }. \end{aligned}$$
(4.6)

Since \(\vert \mathcal{G}^{(\check{\alpha })}\vert ^{\rho }\) is a generalized convex function, we obtain

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{1} \bigr) \bigr\vert ^{\rho }(d\rho )^{\check{\alpha }} \\& \quad \leq \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1- \rho )^{\check{\alpha }} \bigl[\rho ^{(\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho }+(1-\rho )^{( \check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}( \eta _{1}) \bigr\vert ^{\rho } \bigr](d\rho )^{\check{\alpha }} \\& \quad = \biggl[\frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho }+ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }. \end{aligned}$$
(4.7)

Similarly,

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\rho )^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(\check{\alpha })} \bigl(\rho y+(1- \rho )\eta _{2} \bigr) \bigr\vert ^{\rho }(d\rho )^{\check{\alpha }} \\& \quad \leq \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert ^{\rho }+ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho }. \end{aligned}$$
(4.8)

Combining (4.6)–(4.8) gives the desired inequality (4.5). This completes the proof. □

Corollary 4.8

Under the assumptions of Theorem 4.7, if we take \(y=\frac{\eta _{1}+\eta _{2}}{2}\), then we have

$$\begin{aligned}& \biggl\vert \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} - \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad \leq \biggl(\frac{\eta _{2}-\eta _{1}}{4} \biggr)^{\check{\alpha }} \biggl( \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} \biggr)^{1-\frac{1}{\rho }} \\& \qquad {}\times \biggl[ \biggl( \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \biggl\vert \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr\vert ^{\rho } + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho } \biggr)^{1/\rho } \\& \qquad{} + \biggl( \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \biggl\vert \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr\vert ^{\rho } + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \biggr)^{1/\rho } \biggr]. \end{aligned}$$

5 Generalized inequalities for second-order differentiability

This section is devoted to certain generalizations for twice locally differentiable functions, which are connected with the Hermite–Hadamard-type inequality. For this purpose, we need the following lemma.

Lemma 5.1

Let \(\check{\alpha }\in (0,1]\), and let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }}\) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\) and \(\mathcal{G}^{(2\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[ \eta _{1},\eta _{2}]\). Then

$$\begin{aligned}& \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr] \Gamma (1+\check{\alpha })- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+\check{ \alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \\& \quad = \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \mathcal{G}^{(2\check{\alpha })} \biggl( \frac{1-\vartheta }{2}\eta _{1}+ \frac{1+\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \qquad{} +\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \mathcal{G}^{(2\check{\alpha })} \biggl( \frac{1+\vartheta }{2}\eta _{1}+ \frac{1-\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \biggr]. \end{aligned}$$
(5.1)

Proof

Using local fractional integration by parts and change of variable, we have

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \mathcal{G}^{(2\check{\alpha })} \biggl( \frac{1+\vartheta }{2}\eta _{1}+ \frac{1-\vartheta }{2} \eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \quad = \biggl(\frac{2}{\eta _{1}-\eta _{2}} \biggr)^{\check{\alpha }} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \mathcal{G}^{(\check{\alpha })} \biggl( \frac{1+\vartheta }{2}\eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) \bigg\vert _{0}^{1} \\& \qquad{} - \biggl(\frac{4}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{\check{\alpha }} \mathcal{G}^{( \check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1} + \frac{1-\vartheta }{2}\eta _{2} \biggr) (d\vartheta )^{\check{\alpha }} \\& \quad = \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl(\frac{8}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }}\Gamma (1+ \check{\alpha })\mathcal{G}(\eta _{1}) \\& \qquad{} - \biggl(\frac{8}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{ \check{\alpha }} \frac{\Gamma ^{2}(1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\mathcal{G} \biggl( \frac{1+\vartheta }{2} \eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \quad = \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr)+ \biggl(\frac{8}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \Gamma (1+\check{\alpha })\mathcal{G}(\eta _{1}) \\& \qquad {}- \biggl( \frac{16}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{\check{\alpha }} \frac{\Gamma ^{2}(1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{\eta _{1}}^{\frac{\eta _{1}+\eta _{2}}{2}} \mathcal{G}(u) (du)^{ \check{\alpha }} \\& \quad = \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr)+ \biggl(\frac{8}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \Gamma (1+\check{\alpha }) \mathcal{G}(\eta _{1}) \\& \qquad {}- \biggl( \frac{16}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{\check{\alpha }} {\Gamma ^{2}(1+ \check{\alpha })} {}_{\eta _{1}}\mathcal{I}^{(\check{\alpha })}_{ \frac{\eta _{1}+\eta _{2}}{2}}\mathcal{G}(u) \end{aligned}$$
(5.2)

and, analogously,

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \mathcal{G}^{(2\check{\alpha })} \biggl( \frac{1-\vartheta }{2}\eta _{1}+ \frac{1+\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \quad =- \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \mathcal{G}^{(\check{\alpha })} \biggl( \frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) \bigg\vert _{0}^{1} \\& \qquad{} + \biggl(\frac{4}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{\check{\alpha }} \mathcal{G}^{( \check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1} + \frac{1+\vartheta }{2}\eta _{2} \biggr) (d\vartheta )^{\check{\alpha }} \\& \quad =- \biggl(\frac{2}{\eta _{2} -\eta _{1}} \biggr)^{\check{\alpha }}\mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr)+ \biggl( \frac{8}{(\eta _{2} -\eta _{1})^{2}} \biggr)^{\check{\alpha }}\Gamma (1+\check{\alpha }) \mathcal{G}(\eta _{2}) \\& \qquad{} - \biggl(\frac{8}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{ \check{\alpha }} \frac{\Gamma ^{2}(1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\mathcal{G} \biggl( \frac{1-\vartheta }{2} \eta _{1} +\frac{1+\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \quad =- \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl(\frac{8}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }}\Gamma (1+ \check{\alpha })\mathcal{G}(\eta _{2}) \\& \qquad{} - \biggl(\frac{16}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{ \check{\alpha }} \frac{\Gamma ^{2}(1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{ \frac{\eta _{1}+\eta _{2}}{2}}^{\eta _{2}}\mathcal{G}(u) (du)^{ \check{\alpha }} \\& \quad =- \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr)+ \biggl(\frac{8}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \Gamma (1+\check{\alpha })\mathcal{G}(\eta _{2}) \\& \qquad{} - \biggl(\frac{16}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{ \check{\alpha }} {\Gamma ^{2}(1+\check{\alpha })} {}_{ \frac{\eta _{1}+\eta _{2}}{2}}\mathcal{I}^{(\check{\alpha })}_{\eta _{2}} \mathcal{G}(u). \end{aligned}$$
(5.3)

Adding (5.2) and (5.3) and then multiplying both sides by \((\frac{(\eta _{2}-\eta _{1})^{2}}{16} )^{\check{\alpha }}\) give the desired identity. This completes the proof. □

Remark 5.2

If we take \(\check{\alpha }=1\), then Lemma 5.1 reduces to the result presented by Barani et al. [25].

Theorem 5.3

Let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }} \) (\(0< \check{\alpha }\leq 1\)) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\), \(\mathcal{G}^{(2\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[ \eta _{1},\eta _{2}]\), and \(\vert \mathcal{G}^{(2\check{\alpha })}\vert \) is a generalized convex function on Ω. Then

$$\begin{aligned}& \biggl\vert \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr] \Gamma (1+\check{ \alpha })- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+ \check{ \alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \bigl[ \bigl\vert \mathcal{G}^{(2\check{\alpha })}( \eta _{1}) \bigr\vert + \bigl\vert \mathcal{G}^{(2\check{\alpha })} (\eta _{2}) \bigr\vert \bigr] \biggl[\frac{1}{\Gamma (1+\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr]. \end{aligned}$$
(5.4)

Proof

From Lemma 5.1 and the modulus property we have

$$\begin{aligned}& \biggl\vert \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr] \Gamma (1+\check{ \alpha })- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+ \check{ \alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2} \eta _{2} \biggr) \biggr\vert (d \vartheta )^{\check{\alpha }} \\& \qquad{} + \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1} +\frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert (d \vartheta )^{\check{\alpha }} \biggr]. \end{aligned}$$

Since \(\vert \mathcal{G}^{(2\check{\alpha })}\vert \) is a generalized convex function on Ω, we have

$$\begin{aligned} \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1-\vartheta }{2} \eta _{1}+ \frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert \leq \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2 \check{\alpha })}(\eta _{1}) \bigr\vert + \biggl( \frac{1+\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}( \eta _{2}) \bigr\vert \end{aligned}$$

and

$$\begin{aligned} \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1+\vartheta }{2} \eta _{1} +\frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert \leq \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2 \check{\alpha })}(\eta _{1}) \bigr\vert + \biggl( \frac{1-\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}( \eta _{2}) \bigr\vert . \end{aligned}$$

Therefore

$$\begin{aligned}& \biggl\vert \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr] \Gamma (1+\check{ \alpha })- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+ \check{ \alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \\& \qquad {}\times\int _{0}^{1} \bigl(1-\vartheta ^{2 \check{\alpha }} \bigr) \biggl\{ \biggl(\frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{1}) \bigr\vert + \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2 \check{\alpha })}( \eta _{2}) \bigr\vert \biggr\} (d\vartheta )^{ \check{\alpha }} \\& \qquad{} +\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\{ \biggl(\frac{1+\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{1}) \bigr\vert + \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}( \eta _{2}) \bigr\vert \biggr\} (d \vartheta )^{\check{\alpha }} \biggr] \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{32^{\check{\alpha }}} \bigl[ \bigl\vert \mathcal{G}^{(2\check{\alpha })}( \eta _{1}) \bigr\vert + \bigl\vert \mathcal{G}^{(2\check{\alpha })} (\eta _{2}) \bigr\vert \bigr] \\& \qquad {}\times \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl\{ \bigl(1-t^{2\check{\alpha }} \bigr) \bigl[ ({1-\vartheta } )^{ \check{\alpha }} + ({1+\vartheta } )^{\check{\alpha }} \bigr] \bigr\} (d \vartheta )^{\check{\alpha }} \biggr], \end{aligned}$$

where we have used the equality

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl\{ \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \bigl[ ({1-\vartheta } )^{ \check{\alpha }}+ ({1+\vartheta } )^{\check{\alpha }} \bigr] \bigr\} (d \vartheta )^{\check{\alpha }} \\& \quad =2^{\check{\alpha }} \biggl[\frac{1}{\Gamma (1+\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr]. \end{aligned}$$

This completes the proof. □

Theorem 5.4

Let \(\rho , \omega >1\) with \(\rho ^{-1}+\omega ^{-1}=1\), and let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }}\) (\(0<\check{\alpha }\leq 1\)) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\), \(\mathcal{G}^{(2\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[ \eta _{1},\eta _{2}]\), and \(\vert \mathcal{G}^{(2\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω. Then

$$\begin{aligned}& \biggl\vert \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr] \Gamma (1+\check{ \alpha })- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+ \check{ \alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl(\frac{1}{\Gamma (1+\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr)^{1- \frac{1}{\rho }} \bigl[ \bigl[\Psi _{1}^{(\check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+\Psi _{2}^{( \check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[\Psi _{2}^{(\check{\alpha })} \bigl\vert \mathcal{G}^{(2 \check{\alpha })} (\eta _{1}) \bigr\vert ^{\rho }+ \Psi _{1}^{( \check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$
(5.5)

where

$$\begin{aligned}& \Psi _{1}^{(\check{\alpha })}=\frac{1}{2^{\check{\alpha }}} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })} - \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+ \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr], \\& \Psi _{2}^{(\check{\alpha })}=\frac{1}{2^{\check{\alpha }}} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })} + \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}- \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr]. \end{aligned}$$
(5.6)

Proof

It follows Lemma 5.1 and the generalized power-mean integral inequality that

$$\begin{aligned}& \biggl\vert \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr]\Gamma (1+\check{ \alpha }) - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+\check{ \alpha }) {}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1} +\frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert (d \vartheta )^{\check{\alpha }} \\& \qquad{} +\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert (d \vartheta )^{\check{\alpha }} \biggr] \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl[ \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1-\vartheta ^{2 \check{\alpha }} \bigr) (d\vartheta )^{\check{\alpha }} \biggr)^{1- \frac{1}{\rho }} \\& \qquad {}\times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }(d\vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \\& \qquad{} + \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) (d\vartheta )^{\check{\alpha }} \biggr)^{1- \frac{1}{\rho }} \\& \qquad {}\times \biggl( \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1-\vartheta ^{2\check{\alpha }} \bigr) \biggl\vert \mathcal{G}^{(2 \check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1}+ \frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }(d\vartheta )^{ \check{\alpha }} \biggr)^{1/\rho } \biggr]. \end{aligned}$$
(5.7)

Since \(\vert \mathcal{G}^{(2\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω, we have

$$\begin{aligned} \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1-\vartheta }{2} \eta _{1}+ \frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho } \leq \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho } + \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2 \check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \end{aligned}$$

and

$$\begin{aligned} \biggl\vert \mathcal{G}^{(2\check{\alpha })} \biggl(\frac{1+\vartheta }{2} \eta _{1}+ \frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }\leq \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2 \check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho }. \end{aligned}$$

Therefore

$$\begin{aligned}& \biggl\vert \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr] \Gamma (1+\check{ \alpha })- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+ \check{ \alpha }) {}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl(\frac{1}{\Gamma (1+\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr)^{1- \frac{1}{\rho }}\biggl[\frac{1}{\Gamma (1+\check{\alpha })} \\& \qquad {}\times \int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\{ \biggl(\frac{1-\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr\} (d\vartheta )^{\check{\alpha }} \\& \qquad {}+ \frac{1}{\Gamma (1+\check{\alpha })} \\& \qquad {}\times\int _{0}^{1} \bigl(1- \vartheta ^{2\check{\alpha }} \bigr) \biggl\{ \biggl(\frac{1+\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr\} (d\vartheta )^{\check{\alpha }} \biggr] \\& \quad \leq \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl(\frac{1}{\Gamma (1+\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr)^{1- \frac{1}{\rho }} \bigl[ \bigl[\Psi _{1}^{(\check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+\Psi _{2}^{( \check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[\Psi _{2}^{(\check{\alpha })} \bigl\vert \mathcal{G}^{(2 \check{\alpha })} (\eta _{1}) \bigr\vert ^{\rho }+ \Psi _{1}^{( \check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })} (\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$
(5.8)

where we have used the equalities

$$\begin{aligned}& \begin{aligned} \Psi _{1}^{(\check{\alpha })}&:=\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1-\vartheta ^{2\check{\alpha }} \bigr) ({1-\vartheta })^{ \check{\alpha }}(d\vartheta )^{\check{\alpha }} \\ &=\frac{1}{2^{\check{\alpha }}} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })} - \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+ \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr], \end{aligned} \\& \begin{aligned}[b] \Psi _{2}^{(\check{\alpha })}&:=\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \bigl(1-\vartheta ^{2\check{\alpha }} \bigr) ({1+\vartheta })^{ \check{\alpha }}(d\vartheta )^{\check{\alpha }} \\ &=\frac{1}{2^{\check{\alpha }}} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })}+ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} - \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr]. \end{aligned} \end{aligned}$$
(5.9)

This completes the proof. □

6 Generalized integral inequalities for third-order local differentiable functions

In this section, we present some novel variants of Hermite–Hadamard-type inequality for the functions with generalized convex third local fractional derivatives. For this purpose, we need the following identity.

Lemma 6.1

Let \(\check{\alpha }\in (0,1]\), and let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }}\) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\) and \(\mathcal{G}^{(3\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[ \eta _{1},\eta _{2}]\). Then

$$\begin{aligned}& \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{\Gamma (1+ \check{ \alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}(\eta _{2})- \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad {}- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{3}(1+ \check{\alpha }){}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \\& \quad = \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \biggl[\frac{1}{\Gamma (1+\check{\alpha })} \\& \qquad {}\times\int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \mathcal{G}^{(3\check{\alpha })} \biggl( \frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \qquad {}-\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2-\vartheta )^{ \check{\alpha }}\mathcal{G}^{(3\check{\alpha })} \biggl( \frac{1+\vartheta }{2}\eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \biggr]. \end{aligned}$$

Proof

Using the local fractional integration by parts and change of variable leads to

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2-\vartheta )^{ \check{\alpha }} \mathcal{G}^{(3\check{\alpha })} \biggl( \frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \quad = \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\vartheta ^{ \check{\alpha }}(1- \vartheta )^{\check{\alpha }}(2-\vartheta )^{ \check{\alpha }} \mathcal{G}^{(2\check{\alpha })} \biggl( \frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) \vert _{0}^{1} \\& \qquad {}- \biggl(\frac{2}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \\& \qquad {}\times\int _{0}^{1} \bigl(3^{\check{\alpha }}\vartheta ^{2\check{\alpha }}-(6 \vartheta )^{\check{\alpha }}+2^{\check{\alpha }} \bigr) \mathcal{G}^{(2 \check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1}+ \frac{1+\vartheta }{2}\eta _{2} \biggr) (d\vartheta )^{\check{\alpha }} \\& \quad =\Gamma (1+\check{\alpha }) \biggl(\frac{4}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \biggl[\mathcal{G}^{(\check{\alpha })} (\eta _{2})+2^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr] \\& \qquad {}- \biggl(\frac{24}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \frac{\Gamma ^{2}(1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}(1-\vartheta )^{\check{\alpha }} \mathcal{G}^{( \check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1} + \frac{1+\vartheta }{2}\eta _{2} \biggr) (d\vartheta )^{\check{\alpha }} \\& \quad =\Gamma (1+\check{\alpha }) \biggl(\frac{4}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \biggl[\mathcal{G}^{(\check{\alpha })}(\eta _{2})+2^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr] \\& \qquad {}+ \biggl( \frac{48}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{\check{\alpha }} \Gamma ^{2}(1+ \check{\alpha })\mathcal{G} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr) \\& \qquad {}- \biggl(\frac{48}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{\check{\alpha }} \frac{\Gamma ^{3}(1+\check{\alpha })}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\mathcal{G} \biggl( \frac{1-\vartheta }{2} \eta _{1} +\frac{1+\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \quad =\Gamma (1+\check{\alpha }) \biggl(\frac{4}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \biggl[\mathcal{G}^{(\check{\alpha })}(\eta _{2})+2^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr] \\& \qquad {}+ \biggl( \frac{48}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+ \check{\alpha }) \mathcal{G} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr) \\& \qquad {}- \biggl(\frac{96}{(\eta _{2}-\eta _{1})^{4}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+ \check{\alpha }){}_{\frac{\eta _{1}+\eta _{2}}{2}} \mathcal{I}^{(\check{\alpha })}_{\eta _{2}} \mathcal{G}(u). \end{aligned}$$
(6.1)

Analogously, we have

$$\begin{aligned}& \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2-\vartheta )^{ \check{\alpha }}\mathcal{G}^{(3\check{\alpha })} \biggl( \frac{1+\vartheta }{2}\eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) (d \vartheta )^{\check{\alpha }} \\& \quad =\Gamma (1+\check{\alpha }) \biggl(\frac{4}{(\eta _{2}-\eta _{1})^{2}} \biggr)^{\check{\alpha }} \biggl[\mathcal{G}^{(\check{\alpha })}(\eta _{1})+2^{ \check{\alpha }} \mathcal{G}^{(\check{\alpha })} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) \biggr] \\& \qquad {}- \biggl( \frac{48}{(\eta _{2}-\eta _{1})^{3}} \biggr)^{\check{\alpha }} \Gamma ^{2}(1+ \check{\alpha })\mathcal{G} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr) \\& \qquad{} + \biggl(\frac{96}{(\eta _{2}-\eta _{1})^{4}} \biggr)^{ \check{\alpha }}\Gamma ^{3}(1+\check{\alpha }) {}_{\eta _{1}} \mathcal{I}^{(\check{\alpha })}_{{\frac{\eta _{1}+\eta _{2}}{2}}} \mathcal{G}(u). \end{aligned}$$
(6.2)

Subtracting the above identities side by side and then multiplying the obtained identity by \((\frac{(\eta _{2}-\eta _{1})^{3}}{96} )^{\check{\alpha }}\), we get the desired result. □

Theorem 6.2

Let \(\rho , \omega >1\) with \(\rho ^{-1}+\omega ^{-1}=1\), and let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }}\) (\(0<\check{\alpha }\leq 1\)) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\), \(\mathcal{G}^{(3\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[ \eta _{1},\eta _{2}]\), and \(\vert \mathcal{G}^{(3\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω. Then

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{ \Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2})- \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \bigl(\Psi _{1}^{*} \bigr)^{1-1/\rho } \bigl[ \bigl[ \bigl(\Psi _{2}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}( \eta _{1}) \bigr\vert ^{\rho } + \bigl(\Psi _{3}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[ \bigl(\Psi _{3}^{*} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })} (\eta _{1}) \bigr\vert ^{\rho }+ \bigl( \Psi _{2}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$
(6.3)

where

$$\begin{aligned}& \Psi _{1}^{*}= \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} -3^{ \check{\alpha }} \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+2^{ \check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}, \end{aligned}$$
(6.4)
$$\begin{aligned}& \Psi _{2}^{*}= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[2^{ \check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}-5^{ \check{\alpha }} \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+4^{ \check{\alpha }} \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} - \frac{\Gamma (1+4\check{\alpha })}{\Gamma (1+5\check{\alpha })} \biggr], \end{aligned}$$
(6.5)

and

$$\begin{aligned} \Psi _{3}^{*}:= \biggl( \frac{1}{2} \biggr)^{\check{\alpha }} \biggl[2^{ \check{\alpha }} \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr] + \frac{\Gamma (1+4\check{\alpha })}{\Gamma (1+5\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr]. \end{aligned}$$
(6.6)

Proof

From Lemma 6.1 and the generalized Hölder integral inequality we get

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{ \Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2}) - \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }){}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })} \\& \qquad {}\times\int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert (d\vartheta )^{\check{\alpha }} \\& \qquad {}+\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert (d\vartheta )^{\check{\alpha }} \biggr] \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \biggl[ \biggl( \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2-\vartheta )^{ \check{\alpha }} (d\vartheta )^{\check{\alpha }} \biggr)^{1-1/\rho } \\& \qquad{} \times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }} (2- \vartheta )^{\check{\alpha }} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }(d\vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \\& \qquad{} + \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }}(d\vartheta )^{\check{\alpha }} \biggr)^{1-1/ \rho } \\& \qquad{} \times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \\& \qquad {}\times \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }(d\vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \biggr]. \end{aligned}$$
(6.7)

Since \(\vert \mathcal{G}^{(3\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω, we have

$$\begin{aligned} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl( \frac{1+\vartheta }{2} \eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho } \leq \biggl(\frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho } + \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \end{aligned}$$

and

$$\begin{aligned} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl( \frac{1-\vartheta }{2} \eta _{1} +\frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }\leq \biggl(\frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho }. \end{aligned}$$

It follows from (6.7) that

$$\begin{aligned}& \biggl\vert \mathcal{G} \biggl(\frac{\eta _{1}+\eta _{2}}{2} \biggr)- \biggl( \frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma (1+ \check{\alpha }) {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \\& \qquad {}+ \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{ \check{\alpha }}\frac{1}{\Gamma (1+\check{\alpha })} \bigl[ \mathcal{G}^{( \check{\alpha })}(\eta _{2})-\mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \biggl[ \biggl( \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }} (2- \vartheta )^{\check{\alpha }}(d\vartheta )^{\check{\alpha }} \biggr)^{1-1/ \rho } \\& \qquad {}\times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \\& \qquad {}\times \biggl[ \biggl(\frac{1+\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl(\frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr](d \vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \\& \qquad {}+ \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }}(d\vartheta )^{\check{\alpha }} \biggr)^{1-1/ \rho } \\& \qquad {}\times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \\& \qquad {}\times \biggl[ \biggl(\frac{1-\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl(\frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr](d \vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \biggr] \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \bigl(\Psi _{1}^{*} \bigr)^{1-1/\rho } \bigl[ \bigl[ \bigl(\Psi _{2}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}( \eta _{1}) \bigr\vert ^{\rho }+ \bigl(\Psi _{3}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[ \bigl(\Psi _{3}^{*} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \bigl(\Psi _{2}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$
(6.8)

where we have used the equalities

$$\begin{aligned}& \begin{aligned} \Psi _{1}^{*}&:=\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }}(d\vartheta )^{\check{\alpha }} \\ &=\frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}-3^{ \check{\alpha }} \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+2^{ \check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}, \end{aligned} \\& \begin{aligned} \Psi _{2}^{*}&:= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }}(1-\vartheta )^{2\check{\alpha }}(2-\vartheta )^{ \check{\alpha }}(d\vartheta )^{\check{\alpha }} \\ &= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[2^{\check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} -5^{ \check{\alpha }} \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+4^{ \check{\alpha }} \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}- \frac{\Gamma (1+4\check{\alpha })}{\Gamma (1+5\check{\alpha })} \biggr], \end{aligned} \\& \begin{aligned} \Psi _{3}^{*}&:= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }}(1+\vartheta )^{\check{\alpha }}(1-\vartheta )^{ \check{\alpha }}(2-\vartheta )^{\check{\alpha }} (d \vartheta )^{ \check{\alpha }} \\ &= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[2^{\check{\alpha }} \biggl[\frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr]+ \frac{\Gamma (1+4\check{\alpha })}{\Gamma (1+5\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr]. \end{aligned} \end{aligned}$$

This completes the proof of Theorem 6.2. □

Corollary 6.3

If we choose \(\rho =1\), then under the assumptions of Theorem 6.2, we get

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{ \Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2})- \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }) {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{48} \biggr)^{\check{\alpha }} \bigl[ \bigl(\Psi _{2}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })} ( \eta _{1}) \bigr\vert + \bigl(\Psi _{3}^{*} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{2}) \bigr\vert \bigr], \end{aligned}$$
(6.9)

where \(\Psi _{2}^{*}\) and \(\Psi _{3}^{*}\) are given in (6.5) and (6.6), respectively.

Remark 6.4

Letting \(\check{\alpha }=1\), Theorem 6.2 reduces to Theorem 3.1 of [26].

Theorem 6.5

Let \(\rho , \omega >1\) with \(\rho ^{-1}+\omega ^{-1}=1\), and let a mapping \(\mathcal{G}:\Omega \rightarrow \mathbb{R}^{\check{\alpha }}\) (\(0<\check{\alpha }\leq 1\)) be such that \(\mathcal{G}\in \mathcal{D}_{\check{\alpha }}(\Omega )\), \(\mathcal{G}^{(3\check{\alpha })}\in \mathcal{C}_{\check{\alpha }}[ \eta _{1},\eta _{2}]\), and \(\vert \mathcal{G}^{(3\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω. Then

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{ \Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2})- \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \bigl(\Psi _{1}^{***} \bigr)^{1-1/\rho } \bigl[ \bigl[ \bigl(\Psi _{2}^{***} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}( \eta _{1}) \bigr\vert ^{ \rho }+ \bigl(\Psi _{3}^{***} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[ \bigl(\Psi _{3}^{***} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \bigl(\Psi _{2}^{***} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{ \rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$
(6.10)

where

$$\begin{aligned}& \Psi _{1}^{***}= \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr]+ \frac{\Gamma (1+\check{\alpha } (\frac{2\rho -m-2}{\rho -1} ) )}{\Gamma (1+\check{\alpha } (\frac{3\rho -m-2}{\rho -1} ) )} - \frac{\Gamma (1+\check{\alpha } (\frac{3\rho -m-2}{\rho -1} ) )}{\Gamma (1+\check{\alpha } (\frac{4\rho -m-3}{\rho -1} ) )}, \\& \begin{aligned} \Psi _{2}^{***}&= \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} + \frac{\Gamma (1+(m+1)\check{\alpha })}{\Gamma (1+(m+2)\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}- \frac{\Gamma (1+(m+2)\check{\alpha })}{\Gamma (1+(m+3)\check{\alpha })} \biggr] \\ &\quad{} - \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} - \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}+ \frac{\Gamma (1+(m+2)\check{\alpha })}{\Gamma (1+(m+3)\check{\alpha })}- \frac{\Gamma (1+(m+3)\check{\alpha })}{\Gamma (1+(m+4)\check{\alpha })} \biggr], \end{aligned} \\& \Psi _{3}^{***}= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} - \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}+ \frac{\Gamma (1+(m+2)\check{\alpha })}{\Gamma (1+(m+3)\check{\alpha })} - \frac{\Gamma (1+(m+3)\check{\alpha })}{\Gamma (1+(m+4)\check{\alpha })} \biggr]. \end{aligned}$$
(6.11)

Proof

Using Lemma 6.1 and the generalized Hölder integral inequality, we have

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr)+ \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }} { \Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2})- \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }){}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })}\\& \qquad {}\times \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1}+\frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert (d\vartheta )^{\check{\alpha }} \\& \qquad {}+\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1}+\frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert (d\vartheta )^{\check{\alpha }} \biggr] \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \biggl[ \biggl( \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }(\frac{\rho -m}{\rho -1})} (d\vartheta )^{ \check{\alpha }} \biggr)^{1-1/\rho } \\& \qquad{} \times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha } }(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{m\check{\alpha }} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1-\vartheta }{2}\eta _{1} +\frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }(d\vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \\& \qquad{} + \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }(\frac{\rho -m}{\rho -1})}(d\vartheta )^{ \check{\alpha }} \biggr)^{1-1/\rho } \\& \qquad{} \times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha } }(1-\vartheta )^{\check{\alpha } }(2- \vartheta )^{m\check{\alpha }} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1+\vartheta }{2}\eta _{1} + \frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }(d \vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \biggr]. \end{aligned}$$

Since \(\vert \mathcal{G}^{(3\check{\alpha })}\vert ^{\rho }\) is a generalized convex function on Ω, we have

$$\begin{aligned} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1+\vartheta }{2} \eta _{1}+ \frac{1-\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho } \leq \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \end{aligned}$$

and

$$\begin{aligned} \biggl\vert \mathcal{G}^{(3\check{\alpha })} \biggl(\frac{1-\vartheta }{2} \eta _{1}+ \frac{1+\vartheta }{2}\eta _{2} \biggr) \biggr\vert ^{\rho }\leq \biggl( \frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl( \frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho }. \end{aligned}$$

It follows that

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha }) \mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{\Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2}) - \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }) {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \biggl[ \biggl( \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha } (\frac{\rho -m}{\rho -1})}(d\vartheta )^{ \check{\alpha }} \biggr)^{1-1/\rho } \\& \qquad {}\times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{m\check{\alpha }} \\& \qquad {}\times \biggl[ \biggl(\frac{1+\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl(\frac{1-\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr](d \vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \\& \qquad{} + \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }(\frac{\rho -m}{\rho -1})}(d\vartheta )^{ \check{\alpha }} \biggr)^{1-1/\rho } \\& \qquad{} \times \biggl(\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }}(1-\vartheta )^{\check{\alpha }} (2- \vartheta )^{m\check{\alpha }} \\& \qquad {}\times \biggl[ \biggl(\frac{1-\vartheta }{2} \biggr)^{ \check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \biggl(\frac{1+\vartheta }{2} \biggr)^{\check{\alpha }} \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \biggr](d \vartheta )^{\check{\alpha }} \biggr)^{1/\rho } \biggr] \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \bigl(\Psi _{1}^{***} \bigr)^{1-1/\rho } \bigl[ \bigl[ \bigl(\Psi _{2}^{***} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })} ( \eta _{1}) \bigr\vert ^{ \rho }+ \bigl(\Psi _{3}^{***} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[ \bigl(\Psi _{3}^{***} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \bigl(\Psi _{2}^{***} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{ \rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$

where we have used the equalities

$$\begin{aligned}& \begin{aligned} \Psi _{1}^{***}&=\frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1} \vartheta ^{\check{\alpha }} (1-\vartheta )^{\check{\alpha }}(2- \vartheta )^{\check{\alpha }(\frac{\rho -m}{\rho -1})}(d\vartheta )^{ \check{\alpha }} \\ &= \biggl[\frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr]+ \frac{\Gamma (1+\check{\alpha } (\frac{2\rho -m-1}{\rho -1} ) )}{\Gamma (1+\check{\alpha } (\frac{3\rho -m-2}{\rho -1} ) )}- \frac{\Gamma (1+\check{\alpha } (\frac{3\rho -m-2}{\rho -1} ) )}{\Gamma (1+\check{\alpha } (\frac{4\rho -m-3}{\rho -1} ) )}, \end{aligned} \\& \begin{aligned} \Psi _{2}^{***}&= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }}(1-\vartheta )^{\check{\alpha }}(1+\vartheta )^{ \check{\alpha }} (2-\vartheta )^{m\check{\alpha }}(d \vartheta )^{ \check{\alpha }} \\ &= \biggl[\frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} + \frac{\Gamma (1+(m+1)\check{\alpha })}{\Gamma (1+(m+2)\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}- \frac{\Gamma (1+(m+2)\check{\alpha })}{\Gamma (1+(m+3)\check{\alpha })} \biggr] \\ &\quad{} - \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} - \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}+ \frac{\Gamma (1+(m+2)\check{\alpha })}{\Gamma (1+(m+3)\check{\alpha })}- \frac{\Gamma (1+(m+3)\check{\alpha })}{\Gamma (1+(m+4)\check{\alpha })} \biggr], \end{aligned} \\& \begin{aligned} \Psi _{3}^{***}&= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \frac{1}{\Gamma (1+\check{\alpha })} \int _{0}^{1}\vartheta ^{ \check{\alpha }}(1-\vartheta )^{\check{\alpha }} (1-\vartheta )^{ \check{\alpha }}(2-\vartheta )^{m\check{\alpha }}(d \vartheta )^{ \check{\alpha }} \\ &= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} - \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}+ \frac{\Gamma (1+(m+2)\check{\alpha })}{\Gamma (1+(m+3)\check{\alpha })}- \frac{\Gamma (1+(m+3)\check{\alpha })}{\Gamma (1+(m+4)\check{\alpha })} \biggr]. \end{aligned} \end{aligned}$$

This completes the proof of Theorem 6.5. □

We have some particular cases of Theorem 6.5.

Corollary 6.6

Under the suppositions of Theorem 6.5, we have the following conclusions.

(1) Choosing \(m=0\), we get

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{ \Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2})- \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }){}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \bigl(\nabla _{1}^{*} \bigr)^{1-1/\rho } \bigl[ \bigl[ \bigl(\nabla _{2}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}( \eta _{1}) \bigr\vert ^{ \rho }+ \bigl(\nabla _{3}^{*} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[ \bigl(\nabla _{3}^{*} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \bigl( \nabla _{2}^{*} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{ \rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$

where

$$\begin{aligned}& \nabla _{1}^{*}= \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] + \frac{\Gamma (1+\check{\alpha } (\frac{2\rho -1}{\rho -1} ) )}{\Gamma (1+\check{\alpha } (\frac{3\rho -2}{\rho -1} ) )}- \frac{\Gamma (1+\check{\alpha } (\frac{3\rho -2}{\rho -1} ) )}{\Gamma (1+\check{\alpha } (\frac{4\rho -3}{\rho -1} ) )}, \\& \nabla _{2}^{*}=2^{\check{\alpha }} \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}-3^{ \check{\alpha }} \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+ \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}, \\& \nabla _{3}^{*}= \biggl[ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}- \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr]. \end{aligned}$$

(2) Choosing \(m=\rho \), we obtain

$$\begin{aligned}& \biggl\vert \Gamma ^{2}(1+\check{\alpha })\mathcal{G} \biggl( \frac{\eta _{1}+\eta _{2}}{2} \biggr) + \biggl( \frac{\eta _{2}-\eta _{1}}{24} \biggr)^{\check{\alpha }}{ \Gamma (1+ \check{\alpha })} \bigl[\mathcal{G}^{(\check{\alpha })}( \eta _{2})- \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr] \\& \qquad{} - \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }} \Gamma ^{3}(1+\check{\alpha }) {}_{\eta _{1}}\mathcal{I}_{\eta _{2}}^{( \check{\alpha })} \biggr\vert \\& \quad \leq \biggl(\frac{(\eta _{2}-\eta _{1})^{3}}{96} \biggr)^{\check{\alpha }} \bigl(\nabla _{1}^{**} \bigr)^{1-1/\rho } \bigl[ \bigl[ \bigl(\nabla _{2}^{**} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}( \eta _{1}) \bigr\vert ^{ \rho }+ \bigl(\nabla _{3}^{**} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}( \eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[ \bigl(\nabla _{3}^{**} \bigr) \bigl\vert \mathcal{G}^{(3 \check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+ \bigl( \nabla _{2}^{**} \bigr) \bigl\vert \mathcal{G}^{(3\check{\alpha })}(\eta _{2}) \bigr\vert ^{ \rho } \bigr]^{1/\rho } \bigr], \end{aligned}$$

where

$$\begin{aligned}& \nabla _{1}^{**}=2^{\check{\alpha }} \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr], \\& \begin{aligned} \nabla _{2}^{**}&= \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} + \frac{\Gamma (1+(\rho +1)\check{\alpha })}{\Gamma (1+(\rho +2)\check{\alpha })} -\frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}- \frac{\Gamma (1+(\rho +2)\check{\alpha })}{\Gamma (1+(\rho +3)\check{\alpha })} \biggr] \\ &\quad {}- \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} - \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })}+ \frac{\Gamma (1+(\rho +2)\check{\alpha })}{\Gamma (1+(\rho +3)\check{\alpha })}- \frac{\Gamma (1+(\rho +3)\check{\alpha })}{\Gamma (1+(\rho +4)\check{\alpha })} \biggr], \end{aligned} \\& \nabla _{3}^{**}= \biggl(\frac{1}{2} \biggr)^{\check{\alpha }} \biggl[ \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}- \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} + \frac{\Gamma (1+(\rho +2)\check{\alpha })}{\Gamma (1+(\rho +3)\check{\alpha })} - \frac{\Gamma (1+(\rho +3)\check{\alpha })}{\Gamma (1+(\rho +4)\check{\alpha })} \biggr]. \end{aligned}$$

Remark 6.7

Letting \(\check{\alpha }=1\), Theorem 6.5 reduces to Theorem 3.3 of [26].

7 Examples

Example 7.1

Let \(\alpha =\frac{1}{2}\), \(\eta _{1}=1\), \(\eta _{2}=3\), \(y\in (0,4)\), and \(\mathcal{G}(y)=y^{3\alpha }\). Then all the assumptions of Theorem 4.1 are satisfied.

Clearly,

$$\begin{aligned}& \biggl\vert \frac{(y-\eta _{1})^{\check{\alpha }}\mathcal{G}(\eta _{1})+(\eta _{2}-y)^{\check{\alpha }} \mathcal{G}(\eta _{2})}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}- \frac{\Gamma (1+\check{\alpha })}{(\eta _{2}-\eta _{1})^{\check{\alpha }}}{}_{\eta _{1}} \mathcal{I}_{ \eta _{2}}^{(\check{\alpha })}\mathcal{G}(u) \biggr\vert \\& \quad = \biggl\vert \frac{(y-1)^{1/2}1^{3/2}+(3-y)^{1/2}3^{3/2}}{\sqrt{2}}- \frac{\Gamma (3/2)}{\sqrt{2}}{}_{1} \mathcal{I}_{3}^{(1/2)} u^{3/2} \biggr\vert \\& \quad = \biggl\vert \frac{1+\sqrt{54}}{\sqrt{2}}- \frac{\sqrt{\pi }}{2\sqrt{2}}(3\sqrt{\pi }) \biggr\vert \\& \quad \approx 2.5711. \end{aligned}$$
(7.1)

On the other hand, from Theorem 4.1 we get

$$\begin{aligned}& \frac{(y-\eta _{1})^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{1}) \bigr\vert \biggr] \\& \qquad{} + \frac{(\eta _{2}-y)^{2\check{\alpha }}}{(\eta _{2}-\eta _{1})^{\check{\alpha }}} \biggl[ \biggl[ \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr] \bigl\vert \mathcal{G}^{(\check{\alpha })}(y) \bigr\vert + \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \bigl\vert \mathcal{G}^{(\check{\alpha })}(\eta _{2}) \bigr\vert \biggr] \\& \quad =\frac{(y-1)}{\sqrt{2}} \biggl[ \biggl[\frac{\Gamma (3/2)}{\Gamma (2)} - \frac{\Gamma (2)}{\Gamma (5/2)} \biggr]\frac{\Gamma (5/2)}{\Gamma (2)} \vert y \vert +\frac{\Gamma (2)}{\Gamma (5/2)} \frac{\Gamma (5/2)}{\Gamma (2)} \biggr] \\& \qquad{} +\frac{(3-y)}{\sqrt{2}} \biggl[ \biggl[ \frac{\Gamma (3/2)}{\Gamma (2)}- \frac{\Gamma (2)}{\Gamma (5/2)} \biggr] \vert y \vert +\frac{\Gamma (2)}{\Gamma (5/2)} \frac{\Gamma (5/2)}{\Gamma (2)}2 \biggr] \\& \quad \approx 3.1287. \end{aligned}$$
(7.2)

It is nice to see that the implication

$$ 2.5711< 3.1287 $$

holds in (7.1) and (7.2).

Example 7.2

Let \(\alpha =1\), \(\eta _{1}=0\), \(\eta _{2}=3\), \(y\in (-1/2,\infty )\), and \(\mathcal{G}(y)=\ln (2y+1)\). Then all the assumptions of Theorem 5.4 are satisfied.

We clearly see that

$$\begin{aligned}& \biggl\vert \biggl[ \frac{\mathcal{G}(\eta _{1})+\mathcal{G}(\eta _{2})}{2^{\check{\alpha }}} \biggr] \Gamma (1+\check{ \alpha })- \biggl(\frac{1}{\eta _{2}-\eta _{1}} \biggr)^{\check{\alpha }}\Gamma ^{2}(1+ \check{ \alpha }) {}_{\eta _{1}} \mathcal{I}_{\eta _{2}}^{(\check{\alpha })} \mathcal{G}(u) \biggr\vert \\& \quad =\frac{\ln 7}{2}-\frac{1}{3}{}_{0} \mathcal{I}_{3}^{(1)}\ln (2u+1) \vert \\& \quad \approx 0.9684. \end{aligned}$$
(7.3)

On the other hand, we have

$$\begin{aligned}& \begin{aligned} \Psi _{1}^{(\check{\alpha })}&:=\frac{1}{2^{\check{\alpha }}} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })} - \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}+ \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr] \\ &=\frac{1}{2} \biggl[1-\frac{1}{2}-\frac{1}{3}+ \frac{1}{4} \biggr]= \frac{5}{24}, \end{aligned} \\& \begin{aligned} \Psi _{2}^{(\check{\alpha })}&:=\frac{1}{2^{\check{\alpha }}} \biggl[ \frac{1}{\Gamma (1+\check{\alpha })} + \frac{\Gamma (1+\check{\alpha })}{\Gamma (1+2\check{\alpha })}- \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })}- \frac{\Gamma (1+3\check{\alpha })}{\Gamma (1+4\check{\alpha })} \biggr] \\ &=\frac{1}{2} \biggl[1+\frac{1}{2}-\frac{1}{3}- \frac{1}{4} \biggr]= \frac{11}{24}, \end{aligned} \end{aligned}$$

and

$$\begin{aligned}& \frac{(\eta _{2}-\eta _{1})^{2\check{\alpha }}}{16^{\check{\alpha }}} \biggl(\frac{1}{\Gamma (1+\check{\alpha })} - \frac{\Gamma (1+2\check{\alpha })}{\Gamma (1+3\check{\alpha })} \biggr)^{1- \frac{1}{\rho }} \bigl[ \bigl[\Psi _{1}^{(\check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{1}) \bigr\vert ^{\rho }+\Psi _{2}^{( \check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \\& \qquad{} + \bigl[\Psi _{2}^{(\check{\alpha })} \bigl\vert \mathcal{G}^{(2 \check{\alpha })} (\eta _{1}) \bigr\vert ^{\rho }+ \Psi _{1}^{( \check{\alpha })} \bigl\vert \mathcal{G}^{(2\check{\alpha })}(\eta _{2}) \bigr\vert ^{\rho } \bigr]^{1/\rho } \bigr] \\& \quad =\frac{9}{16}\sqrt{\frac{2}{3}} \biggl\{ \biggl[ \frac{80}{24}+ \frac{176}{57624} \biggr]^{1/2} + \biggl[ \frac{176}{24}+\frac{80}{57624} \biggr]^{1/2} \biggr\} \approx 1.2439. \end{aligned}$$

Note that \(0.9684<1.2439\), which gives the desired result in Theorem 5.4.

8 Conclusion

In the paper, we investigated the local fractional differentiation and integration for the generalized convex functions. Under this approach, we have derived three identities related to many well-known inequalities in the literature. For generalized convex functions, we obtained several novel bounds for higher-order local differentiable functions in different forms, which lead to the bounds of several known results in [23, 26]. With reference to the definition of generalized convex functions, there is much to explore in the area of fractal analysis and machine learning by introducing specific values of the fractal parameters. Our ideas and approach may lead to a lot of follow-up research.