Abstract
A new class of 2m-point non-stationary subdivision schemes (SSs) is presented, including some of their important properties, such as continuity, curvature, torsion monotonicity, and convexity preservation. The multivariate analysis of subdivision schemes is extended to a class of non-stationary schemes which are asymptotically equivalent to converging stationary or non-stationary schemes. A comparison between the proposed schemes, their stationary counterparts and some existing non-stationary schemes has been depicted through examples. It is observed that the proposed SSs give better approximation and more effective results.
1 Introduction
Subdivision schemes (SSs) have become one of the most essential tools for the generation of curve/surfaces and have been appreciated in many fields such as computer aided geometric design (CAGD), image processing, animation industry, computer graphics, etc.
Several univariate SSs studied in the literature are stationary. It seems that stationary SSs cannot generate circles; on the other hand, non-stationary SSs are capable of reproducing conic sections, spirals, trigonometric and hyperbolic functions of great interest in graphical and engineering applications. The non-stationary SSs were established for the first time by Dyn and Levin [17] in 1991. In 2002, Jena et al. [23] presented a scheme for trigonometric spline curves. Later on, in 2003 Jena et al. [24] also proposed a binary four-point interpolating non-stationary SSs which can generate \(C^{1}\) limit curve. In 2007, Beccari et al. [4, 5] proposed a couple of four-point non-stationary \(C^{2}\) SSs with tension control parameter. For a general treatment of SSs, the readers can refer to [3, 20, 21, 27,28,29]. Recent proposals of non-stationary SSs have been presented by Daniel and Shunmugaraj [10,11,12], Conti and Romani [8, 9], Siddiqi et al. [30, 31], Bari and Mustafa [2], and Tan et al. [32] who have constructed new attractive artifacts in the subdivision museum.
The property of shape preservation is of extraordinary significance and usually used in curve & surface modeling. Several research papers have been published on shape preservation in the last couple of years. In 1994, Méhauté and Utreras [26] introduced a new technique to solve the problem of shape preservation in interpolating SSs. In 1998, Kuijt and Damme [25] constructed local SSs that interpolate functional univariate data preserving convexity. Dyn et al. [16] examined the convexity preservation properties of 4-point binary interpolating SSs of Dyn et al. [19] in 1999. In 2009, Cai [6] discussed the convexity preservation of 4-point ternary stationary SSs. Recently, in 2017, Wang and Li [33] proposed a family of convexity preserving SSs and Akram et al. [1] deduced the shape preserving properties of binary 4-point non-stationary interpolating SSs.
The main objective of this research is to define a new class of 2m-point binary approximating subdivision schemes by using the Lagrange interpolation method. For simplicity, we have analyzed and discussed only 2-point and 4-point non-stationary SSs. It is observed that our proposed SSs are asymptotically equivalent to existing famous Chaikin’s scheme [7] and 4-point binary scheme of Siddiqi et al. [31] and Dyn et al. [15] for different choices of m, respectively. The results show that the binary approximating schemes developed by the proposed algorithm have the ability to reproduce or regenerate the conic sections and trigonometric polynomials as well. Some examples are considered, by choosing an appropriate tension parameter \(0 < \alpha < \frac{\pi }{2}\), to show the usefulness. We also examine the shape preserving properties (monotonicity and convexity preservation) of SSs when applied to functional univariate strictly convex data. Furthermore, motivated by applications in computer graphics and animation, the curvature and torsion of the obtained curves are also presented in this paper.
The plan of this paper is as follows: Sect. 2 is for derivation of a new family of 2m-point approximating non-stationary SSs. Section 3 is devoted for investigation of convergence and continuity of proposed SSs, and in Sect. 4 we deduce the shape preserving properties (monotonicity and convexity preservation) of binary 4-point approximating stationary scheme. Section 5 is devoted to results and discussion. Concluding remarks are presented in Sect. 6.
2 Binary 2m-point non-stationary schemes
In this section, a procedure for constructing a new family of 2n-point binary non-stationary SSs is presented. The following is a general form of one subdivision level of the non-stationary SS:
where the finite set \(a^{j} = \{a_{i}^{j}, i\in \mathbb{Z}\}\) is called the mask. The symbol of the scheme is defined by \(a(z) = \sum_{i\in \mathbb{Z}} a_{i}z^{i}\).
Theorem 1
([18])
Let S be a convergent non-stationary SS with the mask \(a^{j}_{i+ \gamma }\), then
Here we reformulated Lagrange interpolation polynomials and presented some basic identities which key role in this sections. Consider the Lagrange interpolation polynomials of degree \((2m-1)\):
Lemma 2
If \(n=-(m-1),\dots,(m)\), then following results holds:
Proof
We derive this implication individually for each value of n. Now, for \(n=-(m-1)\), we get
Therefore,
Since \(n=-(m-1)\), the above identity can be composed as (4).
In the same manner for \(n=-(m-2),\dots,0,\dots,n\), we have (4), completing the proof. □
Lemma 3
If \(L^{2m-1}_{n}(x)\) is a Lagrange interpolation polynomial of degree \((2m-1)\), obtained in (3) analogously to the nodes \(\{n\}^{m} _{-(m-1)}\), then we get
where \(n=-(m-1),\dots,(m)\).
Proof
Since
we get
This leads to
This implies
Applying (3)–(4) and \(y=\frac{1}{4}\), we get (5). This completes the proof. □
Given \(m\geq 0\), the mask of the following 2m-point non-stationary SSs is:
and also
where \(0\leq a \leq \frac{\pi }{2}\), \(U_{m}=m(4^{2m-1})\) while \(V_{n}\) is defined in Eq. (5).
2.1 Binary 2-point scheme
For \(m=1\) in (6), the 2-point SS is
where
Remark 2.1
-
For \(m=1 \), the proposed SS (6) becomes the two-point non-stationary SS [14].
-
The two-point SS constructed in [23] for the generation of the trigonometric spline of order m, \(m > 2\) also agrees with the proposed SS (6).
-
Now for \(m=1\), we derive the normalized SS (corresponding to (7)). Note that
$$\begin{aligned} \mu ^{j} &=\mu _{0}^{j}+\mu _{1}^{j}=\frac{\sin (\frac{3a}{2^{j+1}} )}{ \sin (\frac{a}{2^{j-1}} )}+ \frac{\sin (\frac{a}{2^{j+1}} )}{ \sin (\frac{a}{2^{j-1}} )} \\ &=\frac{1}{\sin (\frac{a}{2^{j-1}} )} \biggl\{ \sin \biggl(\frac{3a}{2^{j+1}} \biggr)+ \sin \biggl(\frac{a}{2^{j+1}} \biggr) \biggr\} \\ &=\frac{1}{\sin (\frac{a}{2^{j-1}} )} \biggl\{ 2\sin \biggl(\frac{2a}{2^{j+1}} \biggr) \cos \biggl(\frac{a}{2^{j+1}} \biggr) \biggr\} =\frac{\cos (\frac{a}{2^{j+1}} )}{ \cos (\frac{a}{2^{j}} )}. \end{aligned}$$The corresponding normalized SS is obtained by dividing the stencil of the SS (7) at the jth refinement level by their sum:
$$\begin{aligned} \begin{aligned} & q^{j+1}_{2i} =\eta _{0}^{j}q^{j}_{i} +\eta _{1}^{j}q^{j}_{i+1}, \\ &q^{j+1}_{2i+1} =\eta _{1}^{j}q^{j}_{i} +\eta _{0}^{j}q^{j}_{i+1}, \end{aligned} \end{aligned}$$(8)where
$$\begin{aligned} \eta _{0}^{j}= \frac{\cos (\frac{a}{2^{j}} )}{\cos (\frac{a}{2^{j+1}} )} \mu _{0}^{j}, \qquad\eta _{1}^{j}= \frac{\cos (\frac{a}{2^{j}} )}{ \cos (\frac{a}{2^{j+1}} )}\mu _{1}^{j}. \end{aligned}$$
Lemma 4
If f is the limit function of the SS (7), then \((\cos a)f(x)\) is the limit function of the proposed normalized SS.
Proof
It is clear that
□
2.2 Binary 4-point scheme
For \(m=2\) in (6), we get a new four-point symmetric binary approximating SS
where
Similarly, the corresponding normalized SS is obtained by dividing the stencil of mask at the jth refinement level of the SS (9) by their sum:
where
The above normalized SS generates the function \(q(x)=1\) because \(\sum \lambda _{k}^{j}=1, k=-m+1,\dots,m\).
Lemma 5
Let \(j\geq 0\) and \(m>0\) be fixed integers. If \(q_{i}^{j}=\cos \{ (2i )\frac{a}{2^{j}} \}\) then for \(-1\leq i\leq 2^{j}m\), we have
Similarly, if \(q_{i}^{j}=\sin \{ (2i ) \frac{a}{2^{j}} \}\) then for \(-1\leq i\leq 2^{j}n\) we have
Proof
Here we prove the first part. Let \(q_{i}^{0}=\cos (2ia )\). In the first step of the SS (7), we get
At the jth step of the SS, we get
Similarly, we can show that
The proof of the other part is similar. Analogously, we can prove that SS (9) also generates functions \(\cos (a x)\) and \(\sin (a x)\). □
3 Convergence analysis
In this section, we use the asymptotic equivalence method to find the smoothness of the normalized SSs (8) and (10).
Definition 1
([18])
Two binary SSs, \(\{S_{\alpha _{j}}\}\) and \(\{S_{\beta _{j}}\}\), are asymptotically equivalent if
where \(\Vert S_{\alpha _{j}} \Vert _{\infty } =\max \{ \sum_{i\in \mathbb{Z}}\vert \alpha ^{(j)}_{2i}\vert, \vert \alpha ^{(j)}_{2i+1}\vert \} \).
Theorem 6
([18])
Assume that \(\{S_{\alpha _{j}}\}\) is a non-stationary SS and \(\{S_{\beta _{j}}\}\) is a stationary SS. Let \(\{S_{\alpha _{j}}\}\) and \(\{S_{\beta _{j}}\}\) be two asymptotically equivalent SS having finite masks of the same support. If \(\{S_{\beta _{j}}\}\) is \(C^{m}\) and \(\sum^{\infty }_{j=0}2^{mj}\Vert S_{\alpha _{j}} - S_{\beta _{j}} \Vert < \infty \), then the non-stationary SS \(\{S_{a_{j}}\}\) is \(C^{m}\).
Some estimates of stencils \(\eta ^{j}_{k}, k=0,1\) and \(\lambda ^{j}_{k}, k=-1,0,1,2\), are required to find the smoothness of the proposed schemes which are given in the following lemmas.
Lemma 7
The following inequalities hold:
Proof
We give the proof of \((a)\). Note that
Also
This completes the proof of (a). The proof of (b) is obtained similarly. □
Now, by Lemma 7, we have the following result.
Lemma 8
The following inequalities hold:
where \(C_{0}\) and \(C_{1}\) are constants independent of j.
Proof
We present the proof of (a). By Lemma 7(a), we get
This complete the proof of (a). The proof of (b) is obtained similarly. □
Remark 3.1
The the normalized SS (8) is a non-stationary counterpart of the following stationary SS [7]:
because the stencils of the normalized SS (8) converge to the stencils of (11): \(\lambda _{0}^{j}\rightarrow (\frac{3}{4} )\) and \(\lambda _{1}^{j}\rightarrow (\frac{1}{4} )\) as \(j\rightarrow \infty \). The proof of convergence follows from Lemma 8.
Lemma 9
Suppose that the Laurent polynomial \(a(z)\) of the stationary SS (16) can be written as
then SS \(S_{a}\) corresponding to the Laurent polynomial \(a(z)\) is \(C^{1}\).
Proof
To find the smoothness of the stationary scheme \(S_{\alpha }\), we consider \(a(z)\),
If
then
Hence by [18, Corollary 4.11], the SS \(S_{a}\) is \(C^{1}\). □
Lemma 10
The Laurent polynomial \(a^{j}(z)\) of the jth refinement level of the stationary SS (10) can be written as \(a^{j}(z)= (\frac{1+z}{2} )b ^{j}(z)\) where
Proof
Observe that
It can be easily proved that \(a^{j}(z)= (\frac{1+z}{2} )b ^{j}(z)\). □
Theorem 11
The stationary SSs (8) and (11) are asymptotically equivalent, that is,
Proof
From the stationary SSs (8) and (11), we get
From Lemma 8(a), it follows that
Similarly from Lemma 8(b) we obtain
Hence
□
Theorem 12
The non-stationary SS (8) is \(C^{1}\).
Proof
Since \(S_{a}\) is \(C^{1}\) by Lemma 9 and also the stationary SSs (8) and (11) are asymptotically equivalent by Theorem 11, by [18, Theorem 8(a)], it is sufficient to prove that
where
Note that
Since
by Lemma 8(a)–(b), it follows that
Hence
□
Now we discuss the procedure for checking the smoothness of four-point non-stationary SS (9). The proofs of the following lemmas are similar to those of Lemmas 7 and 8.
Lemma 13
The following inequalities hold:
Using Lemma 13, we get following result.
Lemma 14
The following inequalities hold:
where \(D_{0}\), \(D_{1}\), \(D_{2}\), and \(D_{3}\) are some constants independent of j.
Remark 3.2
The four-point stationary SS (9) is a non-stationary counterpart of following stationary SS [15]:
because the stencils of the normalized SS (9) converge to the stencils of the stationary SS (12): \(\lambda _{-1}^{j}\rightarrow -\frac{7}{128}\), \(\lambda _{o}^{j}\rightarrow \frac{105}{128}\), \(\lambda _{1}^{j}\rightarrow \frac{35}{128}\) and \(\lambda _{2}^{j} \rightarrow -\frac{5}{128}\) as \(j\rightarrow \infty \). The proof of these facts follows from Lemma 14.
Theorem 15
The stationary SSs (9) and (12) are asymptotically equivalent, that is,
Proof
From Lemma 14(a), it follows that
Similarly, from Lemma 14(b)–(d) we obtain
Hence
□
Theorem 16
The non-stationary SS (9) is \(C^{2}\).
The proof of above theorem is similar to that of Theorem 12.
4 Shape preservation of binary four-point SS
In this section, we will check what axiom should be applied on the control points so that the limit curve achieved by binary 4-point subdivision scheme (9) is both monotonicity and convexity preserving.
4.1 Monotonicity preservation
Lemma 17
Consider the control points \(\{q_{i}^{0}\}_{i\in \mathbb{Z}}\),
Define first order divided difference by \(D_{i}^{j}=q_{i+1}^{j}-q_{i} ^{j}\), taking
Furthermore, consider \(\frac{29-\sqrt{801}}{4}\leq \rho \leq 1 \), \(\rho \in \mathbb{R}\).
If \(\frac{1}{\rho } \leq Q^{0} \leq \rho \) and \(\{p_{i}^{j}\}\) is given by the SS (9), then
Proof
To prove Lemma 17, we use mathematical induction on j.
-
(I)
By hypothesis, when \(j=0\), \(D_{i}^{0}=q_{i+1}^{0}-q_{i}^{0}>0\), \(\frac{1}{ \rho } \leq Q^{0} \leq \rho \), then (13) is satisfied.
-
(II)
Suppose that (13) is satisfied for some \(j\geq 1\), then we have to prove that it is true for \(j+1\).
We first prove \(D_{i}^{j}>0\), \(\forall j\geq 0, i,j \in \mathbb{Z}\).
Assume that \(D_{i}^{j}>0\), \(\forall i\in \mathbb{Z}\), is true for some \(j\geq 1\). Then \(\forall i\in \mathbb{Z}\), we have
$$\begin{aligned} D_{2i}^{j+1}= {}&q_{2i+1}^{j+1}-q_{2i}^{j+1} \\ = {}&\frac{1}{128} \bigl[-2 \bigl(q_{i}^{j}-q_{i-1}^{j} \bigr)+58 \bigl(q _{i+1}^{j}-q_{i}^{j} \bigr)-2 \bigl(q_{i+2}^{j}-q_{i+1}^{j} \bigr) \bigr] \\ = {}&\frac{1}{128} \bigl[-2D_{i-1}^{j}+58D_{i}^{j}-2D_{i+1}^{j} \bigr] \\ = {}&\frac{D_{i}^{j}}{128} \biggl[\frac{-2}{q_{i-1}^{j}}+58-2q_{i}^{j} \biggr] \\ = {}&\frac{D_{i}^{j}}{128} \biggl[\frac{-2}{\rho }+58-2\rho \biggr]>0 \end{aligned}$$(14)and
$$\begin{aligned} D_{2i+1}^{j+1}= {}&q_{2i+2}^{j+1}-q_{2i+1}^{j+1} \\ ={} &\frac{1}{128} \bigl[-5D_{i-1}^{j}+37D_{i}^{j}+37D_{i+1}^{j}-5D_{i+2} ^{j} \bigr] \\ = {}&\frac{D_{i}^{j}}{128} \biggl[-\frac{5}{q_{i-1}^{j}}+37+37q_{i}^{j}-5q _{i+1}^{j}q_{i}^{j} \biggr] \\ = {}&\frac{D_{i}^{j}}{128} \biggl[-5\frac{1}{\rho }+37+ \biggl(37-5 \frac{1}{ \rho } \biggr)q^{j}_{i} \biggr] \\ \geq {}&\frac{D_{i}^{j}}{128} \biggl[-5\frac{1}{\rho }+37+ \biggl(37-5 \frac{1}{ \rho } \biggr)\rho \biggr] \\ = {}&\frac{D_{i}^{j}}{128\rho } \bigl[37\rho ^{2}+32\rho -5 \bigr] >0, \end{aligned}$$(15)which implies that \(D_{i}^{j+1}>0\), \(\forall i\in \mathbb{Z}\).
Therefore, by induction, \(D_{i}^{j}>0\), \(\forall j\geq 0, i\in \mathbb{Z},j \in \mathbb{Z}\).
-
(III)
We now prove that \(\frac{1}{\rho } \leq Q^{j} \leq \rho \), \(\forall j \geq 0, j\in \mathbb{Z}\).
Since
$$\begin{aligned} \begin{aligned}&q_{2i}^{j}=\frac{D_{2i+1}^{j+1}}{D_{2i}^{j+1}}= \frac{ \frac{D_{i}^{j}}{128} [-\frac{5}{q_{i-1}^{j}}+37+37q_{i}^{j}-5q _{i+1}^{j}q_{i}^{j} ]}{\frac{D_{i}^{j}}{128} [\frac{-2}{q _{i-1}^{j}}+68-2q_{i}^{j} ]}, \\ &q_{2i}^{j}-\rho=\frac{ [-\frac{5}{q_{i-1}^{j}}+37+37q_{i}^{j}-5q _{i+1}^{j}q_{i}^{j} ]-\rho [\frac{-2}{q_{i-1}^{j}}+68-2q _{i}^{j} ]}{ [\frac{-2}{q_{i-1}^{j}}+68-2q_{i}^{j} ]}, \\ &q_{2i}^{j}-\rho=\frac{-\frac{5}{q_{i-1}^{j}}+37+37q_{i}^{j}-5q_{i+1} ^{j}q_{i}^{j}+\frac{2\rho }{q_{i-1}^{j}}-68\rho +2\rho q_{i}^{j}}{\frac{-2}{q _{i-1}^{j}}+68-2q_{i}^{j}}, \\ &q_{2i}^{j}-\rho=\frac{N}{D}, \end{aligned} \end{aligned}$$(16)and as the denominator in (16) is positive, i.e., \(D>0\), the numerator satisfies:
$$\begin{aligned} N\leq {}& {-}\frac{5}{q_{i-1}^{j}}+37+37q_{i}^{j}-5q_{i+1}^{j}q_{i}^{j}+ \frac{2 \rho }{q_{i-1}^{j}}-68\rho +2\rho q_{i}^{j} \\ = {}& \biggl(\frac{-5}{\rho }+37+2\rho \biggr)q^{j}_{i}+37- \frac{5}{q ^{j}_{i-1}}+2\rho \frac{1}{q^{j}_{i-1}}-68\rho \\ = {}&\frac{1}{\rho } \bigl(2\rho ^{3}-31\rho ^{2}+34\rho -5 \bigr) \\ \leq{} &\frac{1}{\rho }(\rho -1) \bigl(2\rho ^{2}-29\rho +5 \bigr)\leq 0. \end{aligned}$$Therefore, \(q_{2i}^{j}\leq \rho \).
Similarly, we can get \(q_{2i+1}^{j}\leq \rho \), \(\frac{1}{q_{2i}^{j}} \leq \rho \) and \(\frac{1}{q_{2i+1}^{j}} \leq \rho \), which implies \(\frac{1}{\rho } \leq Q^{j+1} \leq \rho \).
Therefore, by induction, we have \(\frac{1}{\rho } \leq Q^{j} \leq \rho \), \(\forall j\geq 0, j\in \mathbb{Z}\), completing the proof. □
A direct consequence of Lemma 17 is Theorem 18.
Theorem 18
Suppose the control points \(\{q_{i}^{0} \}_{i\in \mathbb{Z}}\) with \(q_{i}^{0}= (x_{i}^{0},f_{i}^{0} )\) are strictly monotone decreasing (strictly monotone increasing). Denote
Then, for \(\frac{1}{\rho } \leq X^{0} \leq \rho \) and \(\frac{1}{ \rho } \leq Q^{0} \leq \rho \), we have
and the limit functions obtained by the SS (9) are strictly monotone decreasing (strictly monotone increasing).
4.2 Convexity preservation
Definition 2
Consider that data points \(\{q^{0}_{i}\}_{i\in \mathbb{Z}}\) with \(q_{i}^{0}= (x_{i}^{0},q_{i}^{0} )\) are strictly convex, where \(\{x_{i}^{0} \}_{i\in \mathbb{Z}}\) are equidistant. For convenience, we let \(\Delta x_{i}^{0}=x_{i+1}^{0}-x_{i}^{0}=1\). By SS (9), we have \(\Delta x_{i}^{j+1}=x_{i+1}^{j+1}-x_{i}^{j+1}= \frac{1}{2}\Delta x_{i}^{j}=\frac{1}{2^{j+1}}\).
Definition 3
Let \(d^{j}_{i}=2^{j}(q^{j}_{i-1}-2q^{j}_{i}+q^{j}_{i+1})\) denote the 2nd order divided differences. In the following, we will prove \(d^{0}_{i}>0\), \(\forall j\geq 0, j,i \in \mathbb{Z}\). The SS (9) can thus be written in terms of 2nd order divided differences as follows:
Theorem 19
Consider the control points \(\{q^{0}_{i}\}_{i\in \mathbb{Z}}\), \(q^{0}_{i}= (x_{i}^{0},q^{0}_{i} )\), which are strictly convex, i.e., \(d^{0}_{i}>0\), \(\forall i\in \mathbb{Z}\). Let \(\varGamma ^{j}=\max_{i} \{r^{j}_{i},\frac{1}{r^{j}_{i}} \}\), where \(r^{j}_{i}=\frac{d^{j}_{i+1}}{d^{j}_{i}}\), \(\forall j\geq 0\), \(j\in \mathbb{Z}\).
Furthermore, consider \(\frac{17-\sqrt{274}}{3}\leq \lambda \leq 1\), \(\lambda \in \mathbb{R}\). Then for \(\frac{1}{\lambda } \leq \varGamma ^{0} \leq \lambda \), we get
In particular, the limit functions generated by the four-point binary approximating stationary SS defined in (9) preserve convexity.
Proof
To verify Theorem 19, we use mathematical induction on j.
-
(I)
By hypothesis, (17) holds true for \(j=0\), as is easily seen to be true: \(d^{0}_{i}>0\), \(\frac{1}{\lambda }\leq \varGamma ^{0}<\lambda \).
-
(II)
Suppose that if (17) true for some \(j\ge 1\). It must then be shown that (17) holds true for \(j+1\). To achieve this, we first prove that \(d^{j}_{i}>0\), \(\forall j\geq 0, i,j \in \mathbb{Z}\). From the assumption that \(d^{j}_{i}>0\), \(\forall i\in \mathbb{Z}\), it follows \(\forall i \in \mathbb{Z}\) that
$$\begin{aligned} d^{j+1}_{2i} &=\frac{1}{32} \bigl[-5d^{j}_{i-1}+34d^{j}_{i}+3d^{j}_{i+1} \bigr] \\ &=\frac{d_{i}^{j}}{32} \biggl[-5\frac{d^{j}_{i-1}}{d_{i}^{j}}+34+3\frac{d ^{j}_{i+1}}{d^{j}_{i}} \biggr] \\ &= \frac{d_{i}^{j}}{32} \biggl[-5\frac{1}{r_{i-1}^{j}}+34+3r_{i}^{j} \biggr] \\ &\geq \frac{d_{i}^{j}}{32\lambda } \bigl[-5\lambda ^{2}+34\lambda +3 \bigr]\\ &\geq 0, \end{aligned}$$and
$$\begin{aligned} d^{j+1}_{2i+1} &=\frac{1}{32} \bigl[3d^{j}_{i}+34d^{j}_{i+1}-5d^{j} _{i+2} \bigr] \\ &=\frac{d^{j}_{i}}{32} \biggl[3+34\frac{d^{j}_{i+1}}{d^{j}_{i}}-5\frac{d ^{j}_{i+2}}{d^{j}_{i}} \biggr] \\ &=\frac{d^{j}_{i}}{32} \bigl[3+(34-5\lambda )r_{i}^{j} \bigr] \\ &\geq \frac{d^{j}_{i}}{32\lambda } [-2\lambda +34 ]\\ &\geq 0, \end{aligned}$$which implies that \(d_{i}^{j+1}>0\), \(\forall i\in \mathbb{Z}\).
Therefore, by mathematical induction, we have \(d^{j}_{i}>0\), \(\forall j\geq 0, i, j\in \mathbb{Z}\).
-
(III)
Now we prove that \(\frac{1}{\lambda }\geq \varGamma ^{j+1}< \lambda \), \(j\geq 0\), \(i\in \mathbb{Z}, j\in \mathbb{Z}\).
Since
$$ r_{2i}^{j+1}=\frac{d^{j+1}_{2i+1}}{d^{j+1}_{2i}}=\frac{\frac{d^{j} _{i}}{32} [3+34r_{i}^{j}-5r_{i}^{j}r_{i+1}^{j} ]}{\frac{d _{i}^{j}}{32} [-5\frac{1}{r_{i-1}^{j}}+34+3r_{i}^{j} ]}= \frac{3+34r _{i}^{j}-5r_{i}^{j}r_{i+1}^{j}}{-5\frac{1}{r_{i-1}^{j}}+34+3r_{i}^{j}}, $$we get
$$\begin{aligned} r_{2i}^{j+1}-\lambda = &\frac{3+34r_{i}^{j}-5r_{i}^{j}r_{i+1}^{j}+5 \lambda \frac{1}{r_{i-1}^{j}}-34\lambda -3\lambda r_{i}^{j}}{-5\frac{1}{r _{i-1}^{j}}+34+3r_{i}^{j}}. \end{aligned}$$Since \(d_{2i}^{j+1}\geq 0\), the numerator of the above expression satisfies:
$$\begin{aligned} \text{Numerator} &\leq 3+34r_{i}^{j}-5r_{i}^{j}r_{i+1}^{j}+5 \lambda \frac{1}{r _{i-1}^{j}}-5-3\lambda r_{i}^{j} \\ &= \biggl(34-5\frac{1}{\lambda }-3\lambda \biggr)r_{i}^{j}+3+5 \lambda \frac{1}{r _{i-1}^{j}}-34\lambda \\ &= \biggl(34-5\frac{1}{\lambda }-3\lambda \biggr)\lambda +3+5\lambda ^{2}-34\lambda \\ &=2\lambda ^{2}-2 \\ &=2(\lambda -1) (\lambda +1)\\ &\leq 0, \end{aligned}$$therefore \(r_{2i}^{j+1}\leq \lambda \).
Similarly, we get \(r_{2i+1}^{j+1}\leq \lambda \), \(\frac{1}{r_{2i}^{j+1}}\leq \lambda \), and \(\frac{1}{r_{2i+1}^{j+1}} \leq \lambda \), which implies \(\frac{1}{\lambda }\geq \varGamma ^{j+1}< \lambda \).
Therefore, by mathematical induction, we have \(\frac{1}{\lambda } \geq \varGamma ^{j}<\lambda \), \(\forall j\geq 0, j\in \mathbb{Z}\), completing the proof. □
5 Results and discussion
Now, we compare the proposed SSs (8) and (10) with some known existing ASS [4, 12,13,14, 22, 23] and illustrate through their smooth curves helix, curvature, and torsion plots. The curves in the figures of this section are drawn after the fifth subdivision level.
In Fig. 1, we first compare the helix, curvature and torsion plots of the 3-point schemes [11, 13, 23] and the 2-point proposed scheme (8). Similarly, in Fig. 2, we compare the helix, curvature and torsion plots of the 4-point schemes [14, 22] and the proposed scheme (10).
The limit curves generated by existing SSs [4, 12,13,14, 22, 23] and proposed schemes (8) and (10), along with their curvature plots, are illustrated in Fig. 3.
6 Conclusion
In this paper, we have constructed a simple and efficient algorithm to generate binary 2m-point approximating non-stationary SS for any integer \(m \geq 2\). The proposed 2-point (8) and 4-point (10) SSs have been assumed as non-stationary counterparts of the stationary SSs [7] and [15, 31], respectively. The constructions of the SSs (8) and (10) have been associated with trigonometric polynomials that reproduce the functions. It has been proved that our schemes have the ability to reconstruct the conics, especially circles. The asymptotic equivalence method is applied to investigate the smoothness of our SSs. A comparison of our SSs with the existing non-stationary SSs has been depicted by their helix, curvature and torsion plots. It is clear that the proposed SSs give better approximation and are more effective with the control polygons. Also the shape preserving properties of the binary 4-point ASS (9) generating \(C^{2}\)-continuous limit curves have been derived.
References
Akram, G., Bibi, K., Rehan, K., Siddiqi, S.S.: Shape preservation of 4-point interpolating non-stationary subdivision scheme. J. Comput. Appl. Math. 319, 480–492 (2017)
Bari, M., Mustafa, G.: A family of 2n-point ternary non-stationary interpolating subdivision scheme. Mehran Univ. Res. J. Eng. Technol. 36, 12 (2017)
Barton, M., Shi, L., Kilian, M., Wallner, J., Pottmann, H.: Circular arc snakes and kinematic surface generation. In: Computer Graphics Forum, vol. 32, pp. 1–10. Blackwell Sci., Oxford (2013)
Beccari, C., Casciola, G., Romani, L.: An interpolating 4-point \(C^{2}\) ternary non-stationary subdivision scheme with tension control. In: Computer Aided Geometric Design, vol. 24, pp. 210–219. Elsevier, Amsterdam (2007)
Beccari, C., Casciola, G., Romani, L.: A non-stationary uniform tension controlled interpolating 4-point scheme reproducing conics. In: Computer Aided Geometric Design, vol. 24, pp. 1–9. Elsevier, Amsterdam (2007)
Cai, Z.: Convexity preservation of the interpolating four-point \(C^{2}\) ternary stationary subdivision scheme. In: Computer Aided Geometric Design, vol. 26, pp. 560–565. Elsevier, Amsterdam (2009)
Chaikin, G.M.: An algorithm for high-speed curve generation. In: Computer Graphics and Image Processing, vol. 3, pp. 346–349. Elsevier, Amsterdam (1974)
Conti, C., Romani, L.: A new family of interpolatory non-stationary subdivision schemes for curve design. In: Geometric Modeling AIP Conference Proceedings, vol. 1281, pp. 523–526 (2010)
Conti, C., Romani, L.: Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduction. J. Comput. Appl. Math. 236, 543–556 (2011)
Daniel, S., Shunmugaraj, P.: Some non-stationary subdivision schemes. In: Geometric Modeling and Imaging (GMAI ’07), pp. 33–38 (2007)
Daniel, S., Shunmugaraj, P.: Three point stationary and non-stationary subdivision schemes. In: 3rd International Conference on Geometric Modeling and Imaging, 2008. GMAI 2008, pp. 3–8 (2008)
Daniel, S., Shunmugaraj, P.: An interpolating 6-point \(C^{2}\) non-stationary subdivision scheme. J. Comput. Appl. Math. 230, 164–172 (2009)
Daniel, S., Shunmugaraj, P.: An approximating \(C^{2}\) non-stationary subdivision scheme. In: Computer Aided Geometric Design, vol. 26, pp. 810–821. Elsevier, Amsterdam (2009)
Daniel, S., Shunmugaraj, P.: Some interpolating non-stationary subdivision schemes. In: International Symposium on Computer Science and Society (ISCCS), 2011, pp. 400–403 (2011)
Dyn, N., Floater, M.S., Hormann, K.: A \(C^{2}\) four-point subdivision scheme with fourth order accuracy and its extensions analysis. In: Mathematical Methods for Curves and Surfaces, pp. 145–156. Tromso (2004)
Dyn, N., Kuijt, F., Levin, D., van Damme, R.: Convexity preservation of the four-point interpolatory subdivision scheme. In: Computer Aided Geometric Design, vol. 16, pp. 789–792. Elsevier, Amsterdam (1999)
Dyn, N., Levin, D.: Stationary and Non-stationary Binary Subdivision Schemes. Academic Press, San Diego (1992)
Dyn, N., Levin, D.: Subdivision schemes. In: Geometric Modelling Acta Numerica, vol. 11, pp. 73–144. Cambridge University Press, Cambridge (2002)
Dyn, N., Levin, D., Gregory, J.A.: A 4-point interpolatory subdivision scheme for curve design. In: Computer Aided Geometric Design, vol. 4, pp. 257–268. Elsevier, Amsterdam (1987)
Ghaffar, A., Mustafa, G.: The family of even-point ternary approximating schemes. ISRN Appl. Math. 1, 1–14 (2012)
Ghaffar, A., Ullah, Z., Bari, M., Nisar, K.S., Baleanu, D.: Family of odd point non-stationary subdivision schemes and their applications. Adv. Differ. Equ. 2019,171 (2019)
Jena, M., Shunmugaraj, P., Das, P.: A non-stationary subdivision scheme for curve interpolation. ANZIAM J. 44, 216–235 (2008)
Jena, M.K., Shunmugaraj, P., Das, P.: A subdivision algorithm for trigonometric spline curves. In: Computer Aided Geometric Design, vol. 19, pp. 71–88. Elsevier, Amsterdam (2002)
Jena, M.K., Shunmugaraj, P., Das, P.: A non-stationary subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes. In: Computer Aided Geometric Design, vol. 20, pp. 61–77. Elsevier, Amsterdam (2003)
Kuijt, F., van Damme, R.: Convexity preserving interpolatory subdivision schemes. In: Constructive Approximation, vol. 14, pp. 609–630. Springer, Berlin (1998)
Le Méhauté, A., Utreras, F.I.: Convexity-preserving interpolatory subdivision. In: Computer Aided Geometric Design, vol. 11, pp. 17–37. Elsevier, Amsterdam (1994)
Mustafa, G., Ghaffar, A., Aslam, M.: A subdivision-regularization framework for preventing over fitting of data by a model. Appl. Appl. Math. 2011(8), 178–190 (2013)
Mustafa, G., Ghaffar, A., Khan, F.: The odd-point ternary approximating schemes. Am. J. Comput. Math. 1(2), 111–118 (2011). https://doi.org/10.4236/ajcm.2011.12011
Mustafa, G., Khan, F., Ghaffar, A.: The m-point approximating subdivision scheme. Lobachevskii J. Math. 30(2), 138–145 (2009)
Siddiqi, S.S., us Salam, W., Rehan, K.: A new non-stationary binary 6-point subdivision scheme. Appl. Math. Comput. 268, 1227–1239 (2015)
Siddiqi, S.S., us Salam, W., Rehan, K.: Binary 3-point and 4-point non-stationary subdivision schemes using hyperbolic function. Appl. Math. Comput. 258, 120–129 (2015)
Tan, J., Sun, J., Tong, G.: A non-stationary binary three-point approximating subdivision scheme. Appl. Math. Comput. 276, 37–43 (2016)
Wang, Y., Li, Z.: A family of convexity-preserving subdivision schemes. J. Math. Res. Appl. 37, 489–495 (2017)
Acknowledgements
Not applicable.
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ghaffar, A., Ullah, Z., Bari, M. et al. A new class of 2m-point binary non-stationary subdivision schemes. Adv Differ Equ 2019, 325 (2019). https://doi.org/10.1186/s13662-019-2264-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13662-019-2264-4